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Outline

What is Schramm-Loewner evolution?

Two solvability results linking SLE and conformal field theory.

Gaussian free field and Gaussian multiplicative chaos.

Introduction to Liouville quantum gravity.
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What is Schramm-Loewner evolution SLEκ?

SLE is a random non-self-crossing fractal curve.

It connects two boundary points of a simply connected domain.

“Roughness” parameter κ: dimHausdorff(SLEκ) = min(1 + κ
8 , 2).

SLE3 SLE6 SLE32
Images by Antti Kemppainen

SLEκ phases:
simple (κ ≤ 4), self-hitting (4 < κ < 8), space-filling (κ ≥ 8).
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Schramm-Loewner evolution with κ = 3

Simple phase: κ ≤ 4.
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Schramm-Loewner evolution with κ = 6

Self-hitting phase: 4 < κ < 8.
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Schramm-Loewner evolution with κ = 32

Space-filling phase: κ > 8.
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SLEκ = scaling limit of statistical physics interfaces

Critical percolation on the triangular lattice

Image by Duminil-Copin

SLE6 ←→ Percolation [Smirnov ’01]
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SLEκ = scaling limit of statistical physics interfaces

Critical Ising model on the square lattice

Image by Peltola

SLE3 ←→ Ising model [Smirnov ’07]
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SLEκ = scaling limit of statistical physics interfaces

Uniform spanning tree with Dobrushin boundary conditions

Image from Yong Han-Mingchang Liu-Hao Wu ’20.

SLE8 ←→ Uniform spanning tree [Lawler-Schramm-Werner ’01]
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Not a millenium prize problem, but you will become famous

Simply-connected lattice domain with two boundary points.

Consider set of all simple lattice paths between the two points.

Self-avoiding walk = sample from this set weighted by c−length,
where c is the connectivity constant of the lattice.

Does self-avoiding walk converge to SLEκ with κ = 8/3?
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Conjectural properties of scaling limits of discrete models

Let SLE’ = scaling limit of critical statistical physics interface.

Conformal invariance (in law).

SLE’ in D2
d
= SLE’ in D1 under conformal map D1 → D2.

Domain Markov property.
Conditioned on SLE’ curve run until stopping time,
remainder of curve has the law of SLE’ in complement.

Goal: Identify all random curves satisfying these properties.
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Rigorous definition of SLE

Consider curve in upper half-plane from 0 to ∞.

Schramm ’01: definition of Stochastic Loewner evolution via SDE

dgt(z) =
2

gt(z)−
√
κBt

dt.

We will not explain this stochastic differential equation today.

Brownian motion Bt is the only random continuous process
satisfying scale invariance and strong Markov property,

so SLE is the only curve satisfying conformal invariance and
domain Markov property.
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Tools to study SLEκ for general κ

Loosely speaking, three approaches.

SDE definition

dgt(z) =
2

gt(z)−
√
κBt

dt.

Use martingales, Itô calculus, etc.

Coupling with random generalized function called
Gaussian free field (GFF).

Coupling with Liouville quantum gravity.

We will focus on third approach, and how it allows us to prove
predictions from CFT.
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Outline

What is Schramm-Loewner evolution?

Two solvability results linking SLE and conformal field
theory.

Gaussian free field and Gaussian multiplicative chaos.

Introduction to Liouville quantum gravity.
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1. Conformal loop ensemble (CLE)

For κ ∈ (8/3, 8), CLEκ is a random collection of non-crossing loops
which each locally look like SLEκ.

Arises from scaling limits of lattice model interfaces.

limit

There is a canonical notion of CLE for the disk and sphere.

Conformally invariant in law.
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1. Outermost CLE4 loops in disk (image by David Wilson)
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1. Three point nesting function for CLE on the sphere

Let κ ∈ (8/3, 8) and n = −2 cos(4π/κ) ∈ (0, 2].

Let z1, z2, z3 ∈ C and
Xε(z1) = # loops separating ball Bε(z1) from z2, z3.

Let n1, n2, n3 ∈ (0, 2] and ∆i = ∆i (ni , κ) (formula omitted).

lim
ε→0
E[

3∏
i=1

ε−∆i (
ni
n
)Xε(zi )]

=

(
3∏

i=1

|zi − zi+1|−∆i−∆i+1+∆i+2

)
Cκ(∆1,∆2,∆3).
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1. CLE nesting structure constant = imaginary DOZZ

Reparametrize α̂i = α̂i (∆i , κ) (formula omitted).

Rnest
κ (α̂1, α̂2, α̂3) :=

Cκ(∆1,∆2,∆3)√
Cκ(∆1,∆1, 0)Cκ(∆2,∆2, 0)Cκ(∆3,∆3, 0)

.

Theorem A.-Cai-Sun-Wu ’24

Rnest
κ (α̂1, α̂2, α̂3) = C ImDOZZ√

κ/2 (α̂1, α̂2, α̂3).

Physics derivation by [Ikhlef-Jacobsen-Saleur ’15], who also gave
strong empirical evidence via lattice model approximation.

Discrete interpretation of Rnest
κ :

In O(n) loop model, give different weight ni to loops separating zi
from other two points.
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1. Imaginary DOZZ formula

The formula for C ImDOZZ
b (α̂1, α̂2, α̂3) is

AΥb(2b − b−1 +
∑

α̂i )
3∏

i=1

Υb(α̂1 + α̂2 + α̂3 − 2α̂i + b)√
Υb(2α̂i + b)Υb(2α̂i + 2b − b−1)

,

where Υb is Zamolodchikov’s special holomorphic function defined
on C such that for Q = b + b−1 and 0 < Rez < Q,

logΥb(z) =

∫ ∞

0

(
(
Q

2
− z)2e−t −

sinh2(Q2 − z)

sinh(bt) sinh(b−1t)

)
dt

t
.

The imaginary DOZZ formula was introduced in physics by
[Schomerus ’03], [Zamolodchikov ’05], [Kostov-Petkova ’07] as a

structure constant for CFT with central charge 1− 6(
√
κ
2 −

2√
κ
)2.

Natural extension of the structure constants for minimal model
CFTs to continuously varying parameters.
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2. Critical percolation connectivities

Critical site percolation on triangular lattice with mesh size δ.

Pδ
n(z1, . . . , zn) = probability n points lie in the same cluster.

There exists limit [Camia ’23]:

Pn(z1, . . . , zn) := lim
δ→0

π1(δ)
−nPδ

n(z1, . . . , zn),

where π1(δ) = P[0↔ ∂B1(0)]. 20 / 49



2. Three-point connectivity constant

Pn(z1, . . . , zn) := lim
δ→0

π1(δ)
−nPδ

n(z1, . . . , zn).

This limit is conformally covariant [Camia ’23].

Three-point connectivity constant

P3(z1, z2, z3)√
P2(z1, z2)P2(z2, z3)P2(z3, z1)

.

Does not depend on z1, z2, z3.

Conjecturally universal:
not dependent on microscopic properties
(choice of lattice, definition of “lie in the same cluster”).

(choice of renormalization factor π1(δ) disappears in the ratio.)
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2. Delfino-Viti conjecture

Conjecture coming from CFT: with b = 2√
6
,

P3(z1, z2, z3)√
P2(z1, z2)P2(z2, z3)P2(z3, z1)

=

√
2C ImDOZZ

b (
1

4b
− b

2
,
1

4b
− b

2
,
1

4b
− b

2
) ≈ 1.022.

Theorem A.-Cai-Sun-Wu ’24

Above conjecture for the three-point connectivity constant holds.

Baojun Wu’s talk on Friday: proof of this result!
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Gaussian free field on the unit disk D

Dirichlet inner product ⟨f , g⟩∇ := 1
2π

∫
D
∇f (z) · ∇g(z) dz .

Consider the space of smooth functions f on D with ⟨f , f ⟩∇ <∞
and mean zero on ∂D.

Let H(D) be its closure with respect to ⟨·, ·⟩∇.

Let f1, f2, . . . be an orthonormal basis of H(D).

Sample a1, a2, . . . i.i.d. N(0, 1) and set

h =
∑
i

ai fi .

This limit a.s. exists in the space of distributions
(more strongly, h ∈ H−ε

loc(D) for any ε > 0).

h is the (free boundary) GFF with mean zero on ∂D.
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Gaussian free field

Mean zero Gaussian field h on D with covariance

E[h(z)h(w)] = − log |z − w | − log |1− zw |.
h is a distribution or generalized function:

h(z) is not well-defined;∫
C
h(z)ρ(dz) is defined when ρ is sufficiently regular,

e.g., ρ(dz) = f (z)dz for smooth compactly supported f .

(Simulations by Minjae Park, Henry Jackson.)
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Gaussian free field

Mean zero Gaussian field h on D with covariance

E[h(z)h(w)] = − log |z − w | − log |1− zw |.

h is a distribution or generalized function:

h(z) is not well-defined;

Let hε(z) be the average of h on radius-ε circle around z .

h is normalized so that h1(0) = 0.

Do a calculation on the blackboard:

Var hε(z) = − log ε+ O(1) for z ∈ D.

εγ
2/2eγhε(z) small with high probability,

but εγ
2/2
E[eγhε(z)] is constant order.
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Gaussian multiplicative chaos

Let h be a Gaussian free field on D.
Let hε(z) be the average of h on the radius-ε circle around z .
Let γ ∈ (0, 2). Can define a measure

Aγ
h(dz) := lim

ε→0
εγ

2/2eγhε(z) dz .

This is an example of Gaussian multiplicative chaos.
Kahane ’85, Robert-Vargas ’08, Duplantier-Sheffield ’08

Gaussian free field h Discretization of Aγ
h ,

Images by Minjae Park. squares have comparable Aγ
h -mass.
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Gaussian multiplicative chaos

Let γ ∈ (0, 2). Can define a measure

Aγ
h(dz) := lim

ε→0
εγ

2/2eγhε(z) dz .

Measure Aγ
h is supported on the set of γ-thick points:

T γ
h = {z ∈ D : lim

ε→0
hε(z)/ log(1/ε) = γ}.

Hausdorff dimension of T γ
h is 2− γ.

Gaussian free field h Discretization of Aγ
h ,

Images by Minjae Park. squares have comparable Aγ
h-mass. 28 / 49
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What is a planar map?

Embedding of planar graph into Riemann sphere C ∪ {∞},
modulo homeomorphisms of C ∪ {∞}.

Uniform random planar map is a uniform sample from the set of
planar maps with n faces.
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Random planar map simulation

Random planar map, spring embedding in R3 (Thomas Budzinski).
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Random planar map simulation

Random planar map, harmonic embedding in D (Jason Miller).

Scaling limit of this random geometry is Liouville quantum gravity.
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Random planar map simulation

Random planar map, harmonic embedding in D (Jason Miller).
Scaling limit of this random geometry is Liouville quantum gravity.
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Random planar maps → Liouville quantum gravity

n-face random planar map Liouville quantum gravity
Conformally embedded in D.

Discrete area measure An, boundary measure Ln, metric Dn.

General conjecture:
(An, Ln,Dn) converges to a continuum triple (Aγ

h , L
γ
h ,D

γ
h ) called

Liouville quantum gravity defined via Gaussian free field.

Proved for important special cases:
Gwynne-Miller-Sheffield ’17 (mated-CRT map, harmonic embedding),
Holden-Sun ’19 (uniform RPM, Cardy embedding),

Bertacco-Gwynne-Sheffield ’23 (mated-CRT map, Smith embedding).
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Liouville quantum gravity parameter γ

“Larger γ =⇒ rougher surface”.

γ =
√
2: Tree-decorated random planar map.

γ =
√

8/3: Uniform random planar map.

γ =
√
3: Ising-decorated random planar map.

γ = 2: GFF-decorated random planar map
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Two perspectives on Liouville quantum gravity

Liouville conformal field theory (LCFT)

David, Guillarmou, Kupiainen, Rhodes, Vargas, ...

2D quantum field theory with conformal symmetries.

Object of interest: Correlation function.

Random surface perspective

Sheffield, Duplantier-Miller-Sheffield, ...

Describe scaling limit of random planar maps.

Object of interest: quantum surface
(“= measure space with conformal structure”).

These two perspectives describe the same random geometry!
Lecture II: Present both perspectives, explain equivalence.
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Liouville conformal field theory

A quantum field theory is a collection of numbers called
correlation functions, that arise as expectations of a random field.

A conformal field theory is a QFT with conformal symmetries.

Liouville conformal field theory was introduced by Polyakov ’81 in
the context of bosonic string theory.

One of the most fundamental 2D CFTs.

Mathematically constructed by

David-Kupiainen-Rhodes-Vargas ’14 (sphere)

Huang-Rhodes-Vargas ’15 (disk)

Guillarmou-Rhodes-Vargas ’16 (closed surfaces)

Remy ’17 (annulus)
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Liouville CFT: the Liouville field on D

Let γ ∈ (0, 2) and Q = γ
2 + 2

γ .
Let PD be the law of the GFF on D with average zero on ∂D.

Liouville field on D Huang-Rhodes-Vargas ’15

Sample (h, c) from PD × [e−Qcdc] on H−1(D)×R.
The Liouville field is ϕ = h + c.
Let LFD be the measure on H−1(D) describing the law of ϕ.

Formally, Liouville field with insertion of size α ∈ R at z ∈ D is

LF(α,z)
D

= eαϕ(z)LFD(dϕ).

Can rigorously define as LF(α,z)
D

:= limε→0 ε
α2/2eαϕε(z)LFD(dϕ).

Near z , field looks like GFF− α log | · −z |.
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Correlation functions of Liouville CFT

LCFT disk one-point correlation function for µ, µB ≥ 0:

⟨eαϕ(0)⟩D :=

∫
e−µAϕ(D)−µBLϕ(∂D)LF(α,0)

D
(dϕ).

Encodes law of (Aϕ(D), Lϕ(D)) for ϕ ∼ LF(α,0)
D

.

Can define Liouville field, correlation functions for general surfaces,
e.g. Riemann sphere Ĉ:

⟨
3∏

i=1

eαiϕ(zi )⟩
Ĉ
:=

∫
e−µAϕ(Ĉ)LF(α1,z1),(α2,z2),(α3,z3)

Ĉ
(dϕ).

“Solving LCFT” = computing all correlation functions.
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⟨
3∏

i=1

eαiϕ(zi )⟩
Ĉ
:=

∫
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Properties of LCFT correlation functions

Let γ ∈ (0, 2) and Q = γ
2 + 2

γ . Following are necessary properties
for conformal field theory.

Diffeomorphism invariance Huang-Rhodes-Vargas ’18

Suppose f is a diffeomorphism from (D, g) to (D ′, g ′). Then

⟨F (ϕ)⟩D′,g ′,µ,µ∂
= ⟨F (f ◦ ϕ)⟩D,g ,µ,µ∂

.

Weyl anomaly Huang-Rhodes-Vargas ’18

Suppose g ′ = e2σg . Then

⟨F (ϕ+ Qσ)⟩D,g ′,µ,µ∂

⟨F (ϕ)⟩D,g ,µ,µ∂

=
(
ZFF
g ′ /ZFF

g

)1+6Q2

,

where ZFF
g = (det′∆g )

−1/2 and det′∆g is the zeta-regularized
determinant of Laplacian.
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Two perspectives on Liouville quantum gravity

Liouville conformal field theory (LCFT)

David, Guillarmou, Kupiainen, Rhodes, Vargas, ...

2D quantum field theory with conformal symmetries.

Object of interest: Correlation function.

Random surface perspective

Sheffield, Duplantier-Miller-Sheffield, ...

Describe scaling limit of random planar maps.

Object of interest: quantum surface
(“= measure space with conformal structure”).

These two perspectives describe the same random geometry!
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Random surface perspective of LQG

Conformal embedding of a random planar map is not unique!

e.g., can apply conformal automorphism:

In definition of random surface, we will “mod out by choice of
conformal embedding”.
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Random surface perspective of LQG

Let f : D → D̃ be a conformal map. Let Q = γ
2 + 2

γ .

(D, h) (D̃, h̃)

f
h = h̃ ◦ f +Q log |f ′|

Define (D, h) ∼γ (D̃, h̃) if h = h̃ ◦ f + Q log |f ′|.
All members of equivalence class have same LQG measures:

f∗A
γ
h = Aγ

h̃
, f∗L

γ
h = Lγ

h̃
.

A quantum surface is an equivalence class (D, h)/∼γ .
It is a measure space with conformal structure.
(D, h) is called an embedding of the quantum surface.
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Special quantum surfaces: quantum sphere (motivation)

Fix γ =
√
8/3.

Consider a kind of planar map (triangulations, quadrangulations, ...),
let Sn = set of maps with n vertices.

|Sn| = const · eβn · n−7/2(1 + on(1)).

Here const and β are nonuniversal, but −7/2 is universal.

Two ways to remove nonuniversal terms:

Fix n. In the scaling limit get unit area quantum sphere.

Consider
⋃

n Sn but weight each map by e−βn.
Scaling limit gives (free area) quantum sphere.
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Special quantum surfaces: quantum sphere

Fix γ ∈ (0, 2).

Unit area quantum sphere is a quantum surface.

Constructed via GFF, motivated by scaling limit of RPM.

quantum sphere

(Ĉ, φ)/∼γ

QS(a)# = law of area a quantum sphere.

Non-probability measure QS(a) = const× a
− 4

γ2
−2

QS(a)#.

Quantum sphere with no area restriction:

QS :=

∫ ∞

0
QS(a) da.

Note: QS is an infinite measure on the space of quantum surfaces!
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Important quantum surfaces

Fix γ ∈ (0, 2).

quantum sphere

(Ĉ, φ)/∼γ

quantum disk

(D, φ)/∼γ

Laws are infinite measures, which we denote by QS and QD.

QD(ℓ) = law of quantum disks with boundary length ℓ. Then

QD =

∫ ∞

0
QD(ℓ) dℓ, |QD(ℓ)| ∝ ℓ

− 4
γ2

−2
.

|QD(ℓ)| = partition function of boundary length ℓ quantum disks.
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Quantum disk with marked points

Fix γ ∈ (0, 2) and m, n ≥ 0.
Sample D from weighted measure A(D)mL(D)nQD(dD),
independently sample m bulk points and n boundary points.
Let QDm,n be the law of the (m + n)-pointed quantum surface.

QD0,3

QD1,0

QD1,1

e.g., |QD0,3(ℓ)| = ℓ3|QD(ℓ)|.
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Equivalence of perspectives: QS3

A sample from QS3 is a quantum surface with three marked points.

Infinitely many choices of embedding in Ĉ, but can uniquely specify
embedding by fixing the location of the three points in Ĉ.

Theorem Aru-Huang-Sun ’17

Let z1, z2, z3 ∈ C be distinct.
Sample from QS3 and let (Ĉ, ϕ, z1, z2, z3) be the embedding which
places the points at z1, z2, z3.

Then the law of ϕ is Cz1,z2,z3LF(γ,z1),(γ,z2),(γ,z3)

Ĉ
for some constant

Cz1,z2,z3 .
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Equivalence of perspectives: QD0,3 and QD1,1

Theorem Cerclé ’21

Let x1, x2, x3 ∈ ∂D be distinct.
Sample from QD0,3 and embed it as (D, ϕ, x1, x2, x3).

Then the law of ϕ is Cx1,x2,x3LF(γ,x1),(γ,x2),(γ,x3)
D

for some constant
Cx1,x2,x3 .

Theorem A.-Remy-Sun ’21

Let z ∈ D and x ∈ ∂D.
Sample from QD1,1 and embed it as (D, ϕ, z , x).

Then the law of ϕ is Cz,xLF(γ,z),(γ,x)
D

for some constant
Cz,x ∈ (0,∞).
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Equivalence of perspectives: applications

Each perspective has its own tools.
Using the equivalence of perspectives, can access both sets of tools!

Values of Liouville CFT correlation functions are crucial inputs
in computing observables of SLE and LQG+SLE.

[A.-Holden-Sun ’21], [A.-Sun ’21], [A.-Remy-Sun ’22].

Conversely, random surface methods (e.g. SLE) can be used to
solve for Liouville CFT correlation functions.

[A.-Remy-Sun ’21], [A. ’23], [A.-Remy-Sun-Zhu ’23].

Next lecture: details on the following tools/solvability.

Liouville CFT corr functions can be solved via BPZ and OPE.

LQG+SLE coupling, inputs from random planar maps.
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