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@ What is Schramm-Loewner evolution?
@ Two solvability results linking SLE and conformal field theory.
@ Gaussian free field and Gaussian multiplicative chaos.

@ Introduction to Liouville quantum gravity.
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What is Schramm-Loewner evolution SLE,?

SLE is a random non-self-crossing fractal curve.

It connects two boundary points of a simply connected domain.

“Roughness” parameter x:  diMpysdorti(SLEx) = min(1 + %,2).
. .
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Images by Antti Kemppainen

SLE, phases:
simple (k < 4), self-hitting (4 < k < 8), space-filling (x > 8).
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Schramm-Loewner evolution with x = 3

Simple phase: k < 4.
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Schramm-Loewner evolution with kK = 6

Self-hitting phase: 4 < Kk < 8.
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Schramm-Loewner evolution with x = 32

Space-filling phase: « > 8.
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SLE, = scaling limit of statistical physics interfaces

Critical percolation on the triangular lattice

Image by Duminil-Copin

SLEg <— Percolation [Smirnov '01]
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SLE, = scaling limit of statistical physics interfaces

Critical Ising model on the square lattice

Image by Peltola

SLE3 <— Ising model [Smirnov '07]
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SLE, = scaling limit of statistical physics interfaces

Uniform spanning tree with Dobrushin boundary conditions
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Image from Yong Han-Mingchang Liu-Hao Wu '20.

SLEg <— Uniform spanning tree [Lawler-Schramm-Werner '01]
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Not a millenium prize problem, but you will become famous

Simply-connected lattice domain with two boundary points.
Consider set of all simple lattice paths between the two points.

Self-avoiding walk = sample from this set weighted by c~'eneth,
where c is the connectivity constant of the lattice.

Does self-avoiding walk converge to SLE,, with x =8/37?
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Conjectural properties of scaling limits of discrete models

Let SLE' = scaling limit of critical statistical physics interface.

Conformal invariance (in law).
SLE" in D, 4 SLE' in D; under conformal map D; — D».

Domain Markov property.
Conditioned on SLE’ curve run until stopping time,
remainder of curve has the law of SLE' in complement.
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Conjectural properties of scaling limits of discrete models

Let SLE' = scaling limit of critical statistical physics interface.

Conformal invariance (in law).
SLE" in D, 4 SLE' in D; under conformal map D; — D».

Domain Markov property.
Conditioned on SLE’ curve run until stopping time,
remainder of curve has the law of SLE' in complement.

Goal: Identify all random curves satisfying these properties. s



Rigorous definition of SLE

Consider curve in upper half-plane from 0 to oc.

Schramm '01: definition of Stochastic Loewner evolution via SDE
2

—_—dt.

gt(Z) — \/EBt

We will not explain this stochastic differential equation today.

dg:(z) =

Brownian motion B; is the only random continuous process
satisfying scale invariance and strong Markov property,

so SLE is the only curve satisfying conformal invariance and
domain Markov property.
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Tools to study SLE, for general x

Loosely speaking, three approaches.

@ SDE definition

5= g

Use martingales, 1t6 calculus, etc.

@ Coupling with random generalized function called
Gaussian free field (GFF).

@ Coupling with Liouville quantum gravity.

We will focus on third approach, and how it allows us to prove
predictions from CFT.
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@ What is Schramm-Loewner evolution?

e Two solvability results linking SLE and conformal field
theory.

@ Gaussian free field and Gaussian multiplicative chaos.

@ Introduction to Liouville quantum gravity.
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1. Conformal loop ensemble (CLE)

For k € (8/3,8), CLE, is a random collection of non-crossing loops
which each locally look like SLE,.

Arises from scaling limits of lattice model interfaces.

There is a canonical notion of CLE for the disk and sphere.

Conformally invariant in law.
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1. Outermost CLE, loops in disk (ima David Wilso

16 /49



1. Three point nesting function for CLE on the sphere

Let k € (8/3,8) and n = —2cos(47/k) € (0,2].

Let z1,20,2z3 € C and
X:(z1) = # loops separating ball B.(z1) from z, z3.
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1. Three point nesting function for CLE on the sphere

Let k € (8/3,8) and n = —2cos(4n/k) € (0, 2].

Let z1,2p,23 € € and
X.(z1) = # loops separating ball B.(z1) from z, z3.

Let n1, np, n3 € (0,2] and A; = Aj(n;, k) (formula omitted).

3
i -0 NiyX.(z)
Elgg)E[il:[ls ()]

3
= (H |Zi — Zj4+1 |_AI_A"+1+A"+2> C/{(Ala A27 A3)
i=1

17/49



1. CLE nesting structure constant = imaginary DOZZ

Reparametrize a; = a;(A;, k) (formula omitted).

CK/(A]J AZ, A3)

Rnesta7a7a = ’
(A1, 0, 03) V Ca(A1,A1,0)Ca(A2, A2,0)Co(A3, A3,0)

Theorem A .-Cai-Sun-Wu 24

RE (@, @2, @3) = CURP"(@1, @2, ).

Physics derivation by [Ikhlef-Jacobsen-Saleur '15], who also gave
strong empirical evidence via lattice model approximation.

Discrete interpretation of RMest:
In O(n) loop model, give different weight n; to loops separating z;
from other two points.
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1. Imaginary DOZZ formula

The formula for CImDOZZ(a1,C¥2,a3)

ATp(2b— b~ +Za ﬁ Tp(a1 + a2 + a3 — 20, + b)
b ’ \/’T\b 20[, + b)Tb(2al —+ 2b b )

where T}, is Zamolodchikov's special holomorphic function defined
on € such that for @ = b+ b1 and 0 < Rez < Q,

S e i sinh?(€ — z2) dt
log Tp(z) = /0 <(2 —2)e - sinh(bt) si2nh(b_1t)> t

The imaginary DOZZ formula was introduced in physics by
[Schomerus '03], [Zamolodchikov '05], [Kostov-Petkova '07] as a

structure constant for CFT with central charge 1 — 6(@ - %)2

Natural extension of the structure constants for minimal model
CFTs to continuously varying parameters.
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2. Critical percolation connectivities

Critical site percolation on triangular lattice with mesh size 4.
P(zi,...,z,) = probability n points lie in the same cluster.

There exists limit [Camia '23]:

Po(zi,...,2n) = gl_% ﬂl(é)_"Pg(zl, ey Zn),

where 711(6) = P[0 <> 0B1(0)]. 20,49



2. Three-point connectivity constant

Po(z1,. .., zp) = lim 7(6) " "Po(z1, ..., zn).
6—0
This limit is conformally covariant [Camia '23].
Three-point connectivity constant

Ps(z1, 20, 23)
V/ Pa(z1,22) Pa(22, 23) Pa (23, 21)

@ Does not depend on z, 2, z3.

@ Conjecturally universal:
not dependent on microscopic properties
(choice of lattice, definition of “lie in the same cluster”).

(choice of renormalization factor 71(d) disappears in the ratio.)
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2. Delfino-Viti conjecture

Conjecture coming from CFT: with b = NG

P3(z1, 22, z3)
V/ P2(z1, 22) Pa(22, 23) Pa(23, 21)

\@C})mnozz - =2 _ =2 g) ~ 1.022.

Theorem A.-Cai-Sun-Wu '24

Above conjecture for the three-point connectivity constant holds.

Baojun Wu'’s talk on Friday: proof of this result!
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@ What is Schramm-Loewner evolution?
@ Two solvability results linking SLE and conformal field theory.
@ Gaussian free field and Gaussian multiplicative chaos.

@ Introduction to Liouville quantum gravity.
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Gaussian free field on the unit disk D

Dirichlet inner product (f, g)v := 5 [, Vf(2) - Vg(z) dz.

Consider the space of smooth functions f on D with (f,f)y < oo
and mean zero on OD.

Let H(D) be its closure with respect to (-, -)v.
Let f1,f,... be an orthonormal basis of H(D).

Sample aj, a2, ... i.i.d. N(0,1) and set
h= Za,-f;.

This limit a.s. exists in the space of distributions
(more strongly, h € H, <(DD) for any € > 0).

loc

h is the (free boundary) GFF with mean zero on 0D.
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Gaussian free field

Mean zero Gaussian field h on D with covariance

E[h(z)h(w)] = —log |z — w| — log |1 — zW|.

h is a distribution or generalized function:
e h(z ) is not well-defined,;
° f@ p(dz) is defined when p is sufficiently regular,
e.g., p(dz) = f(z)dz for smooth compactly supported f.

o

smaller larger

(Simulations by Minjae Park, Henry Jackson.)
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Gaussian free field

Mean zero Gaussian field h on ID with covariance
E[h(z)h(w)] = —log |z — w| — log |1 — zw|.

h is a distribution or generalized function:
e h(z) is not well-defined;
@ Let h.(z) be the average of h on radius-¢ circle around z.
@ h is normalized so that h1(0) = 0.

Do a calculation on the blackboard:
Var h.(z) = —loge + O(1) for z € D.

£7°/2e7h(2) small with high probability,

2 .
but £7°/2E[e7"(2)] is constant order.
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Gaussian multiplicative chaos

Let h be a Gaussian free field on D.
Let h-(z) be the average of h on the radius-¢ circle around z.
Let v € (0,2). Can define a measure

Al(dz) := lim e’ 2e7he(2) gz
e—0

This is an example of Gaussian multiplicative chaos.
Kahane '85, Robert-Vargas '08, Duplantier-Sheffield '08

smaller o larger
Gaussian free field h Discretization of A},
- iy
Images by Minjae Park. squares have comparable A;-mass.
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Gaussian multiplicative chaos

Let v € (0,2). Can define a measure
Al(dz) := sh—% e’ 2e7he(2) gz
Measure AZ is supported on the set of ~v-thick points:
Ty ={z€D : lim h(z)/log(1/c) =}

Hausdorff dimension of T, is 2 — .

smaller 0 larger
Gaussian free field h Discretization of A},
Images by Minjae Park. squares have comparable A]-mass. 28/49



@ What is Schramm-Loewner evolution?
@ Two solvability results linking SLE and conformal field theory.
@ Gaussian free field and Gaussian multiplicative chaos.

@ Introduction to Liouville quantum gravity.
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What is a planar map?

& &

Embedding of planar graph into Riemann sphere C U {0},
modulo homeomorphisms of C U {o0}.

Uniform random planar map is a uniform sample from the set of
planar maps with n faces.
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andom planar map simulation

Random planar map, spring embedding in R3 (Thomas Budzinski).
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Random planar map, harmonic embedding in D (Jason Miller).
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Random planar map simulation

Random planar map, harmonic embedding in D (Jason Miller).

Scaling limit of this random geometry is Liouville quantum gravity.
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Random planar maps — Liouville quantum gravity

=Y /==

n-face random planar map Liouville quantum gravity
Conformally embedded in ID.

Discrete area measure A,,, boundary measure L,,, metric D,,.

General conjecture:
(An, Ly, Ds) converges to a continuum triple (A}, L}, D)) called
Liouville quantum gravity defined via Gaussian free field.
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Random planar maps — Liouville quantum gravity

NN\

n-face random planar map Liouville quantum gravity
Conformally embedded in ID.

Discrete area measure A, boundary measure L, metric D,,.
General conjecture:

(An, Ly, Ds) converges to a continuum triple (A}, L}, D)) called
Liouville quantum gravity defined via Gaussian free field.

Proved for important special cases:
Gwynne-Miller-Sheffield '17 (mated-CRT map, harmonic embedding),
Holden-Sun '19 (uniform RPM, Cardy embedding),

Bertacco-Gwynne-Sheffield '23 (mated-CRT map, Smith embedding). 33 /49



Liouville quantum gravity parameter ~

“Larger v = rougher surface”.

v = v/2: Tree-decorated random planar map.
v = \/8/_3: Uniform random planar map.

v = v/3: Ising-decorated random planar map.

v = 2: GFF-decorated random planar map

\,J\‘

Woerl
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Two perspectives on Liouville quantum gravity

Liouville conformal field theory (LCFT)

David, Guillarmou, Kupiainen, Rhodes, Vargas, ...

@ 2D quantum field theory with conformal symmetries.

@ Object of interest: Correlation function.

Random surface perspective

Sheffield, Duplantier-Miller-Sheffield, ...

@ Describe scaling limit of random planar maps.

@ Object of interest: quantum surface
("= measure space with conformal structure”).

These two perspectives describe the same random geometry!
Lecture Il: Present both perspectives, explain equivalence.
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Liouville conformal field theory

A quantum field theory is a collection of numbers called
correlation functions, that arise as expectations of a random field.

A conformal field theory is a QFT with conformal symmetries.

Liouville conformal field theory was introduced by Polyakov '81 in
the context of bosonic string theory.

One of the most fundamental 2D CFTs.

Mathematically constructed by
e David-Kupiainen-Rhodes-Vargas '14 (sphere)
e Huang-Rhodes-Vargas '15 (disk)
@ Guillarmou-Rhodes-Vargas '16 (closed surfaces)

e Remy '17 (annulus)
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Liouville CFT: the Liouville field on D

Let v € (0,2) and Q:%—f—%.
Let Pp be the law of the GFF on D with average zero on 0D.

Liouville field on D Huang-Rhodes-Vargas '15

Sample (h,c) from Pp x [e~%¢dc] on H}(D) x R.
The Liouville field is ¢ = h + c.
Let LFp be the measure on H=1(ID) describing the law of ¢.
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Liouville CFT: the Liouville field on D

Let v € (0,2) and Q:%—i—%.
Let Pp be the law of the GFF on D with average zero on 0D.

Liouville field on D Huang-Rhodes-Vargas '15

Sample (h,c) from Pp x [e~%¢dc] on H}(D) x R.
The Liouville field is ¢ = h + c.
Let LFp be the measure on H=1(ID) describing the law of ¢.

Formally, Liouville field with insertion of size « € R at z€ D is
LE(®?) — 292 LFp (dg).

Can rigorously define as LF]%)"Z) = lime_y0 % /2= (2)LF, (d¢)).

Near z, field looks like GFF — alog | - —z|.
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Correlation functions of Liouville CFT

LCFT disk one-point correlation function for u, ug > 0:

(29O . / e Ao(D) 5Ly (OD) B(00) (g 5)

Encodes law of (Ag(D), Ly(D)) for ¢ ~ LFJ(S’O)-

38/49



Correlation functions of Liouville CFT

LCFT disk one-point correlation function for u, ug > 0:

(29O . / e Ao(D) 5Ly (OD) B(00) (g 5)

Encodes law of (Ag(D), Ly(D)) for ¢ ~ LF](S’O).
Can define Liouville field, correlation functions for general surfaces,
e.g. Riemann sphere C:

3 o~
<H eoc;¢(2i)>@ — /e—u%(‘U)LFfﬁal,21)7(042722)7(%723)(d(b)‘
i=1
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Correlation functions of Liouville CFT

LCFT disk one-point correlation function for u, ug > 0:

(29O . / e Ao(D) 5Ly (OD) B(00) (g 5)

Encodes law of (A4(DD), Ly(ID)) for ¢ ~ LF](S’O).
Can define Liouville field, correlation functions for general surfaces,
e.g. Riemann sphere C:

3 o~
<H eoc;¢(2i)>@ — /e—u%(‘U)Lngl,21)7(042722)7(%723)(dd))‘
i=1

“Solving LCFT” = computing all correlation functions.
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Properties of LCFT correlation functions

Let v € (0,2) and Q@ = 7 + % Following are necessary properties
for conformal field theory.

N \

Diffeomorphism invariance Huang-Rhodes-Vargas '18

Suppose f is a diffeomorphism from (D, g) to (D', g’). Then

(F(0)) D g o = (F(f 0 ))D,gpupia-

V,

Weyl anomaly Huang-Rhodes-Vargas '18

Suppose g’ = e??g. Then

(F(¢+ Qo)Dg' o _ (tF ) 7FE) 0@
<F(¢)>D,g,mua - ( gl/ ¢ )

where ZFF (det’ Ag)~1/2 and det’ A, is the zeta-regularized
determlnant of Laplacian.

)
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Two perspectives on Liouville quantum gravity

Liouville conformal field theory (LCFT)

David, Guillarmou, Kupiainen, Rhodes, Vargas, ...

@ 2D quantum field theory with conformal symmetries.

@ Object of interest: Correlation function.

Random surface perspective

Sheffield, Duplantier-Miller-Sheffield, ...

@ Describe scaling limit of random planar maps.

@ Object of interest: quantum surface
("= measure space with conformal structure”).

These two perspectives describe the same random geometry!
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Random surface perspective of LQG

Conformal embedding of a random planar map is not unique!

e.g., can apply conformal automorphism:

+

- }

In definition of random surface, we will “mod out by choice of
conformal embedding’”.
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Random surface perspective of LQG

Let f : D — D be a conformal map. Let Q = % + %
(D, h) (D, h)
f 3
- h=ho f+Qlog|f!

Define (D, h) ~-, (D, h) if h=hof + Qlog|f'|.
All members of equivalence class have same LQG measures:

fA] = A%, fl) = L%.
A quantum surface is an equivalence class (D, h)/~.

It is a measure space with conformal structure.
(D, h) is called an embedding of the quantum surface.
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Special quantum surfaces: quantum sphere (motivation)

Fix v = \/%

Consider a kind of planar map (triangulations, quadrangulations, ...),
let S, = set of maps with n vertices.

|5, = const - €%7 - n7T/2(1 4 0,(1)).
Here const and /3 are nonuniversal, but —7/2 is universal.
Two ways to remove nonuniversal terms:

@ Fix n. In the scaling limit get unit area quantum sphere.

e Consider J,, Sp but weight each map by e Pn.
Scaling limit gives (free area) quantum sphere.
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Special quantum surfaces: quantum sphere

Fix v € (0,2).
Unit area quantum sphere is a quantum surface.

Constructed via GFF, motivated by scaling limit of RPM.

gé . wrpmeee,, quantum sphere
(Ca ¢)/N7

QS(a)* = law of area a quantum sphere.
4
Non-probability measure QS(a) = const x a +* 2QS(a)#.
Quantum sphere with no area restriction:
o
QS := / QS(a) da.
0

Note: QS is an infinite measure on the space of quantum surfaces!
44 / 49



Important quantum surfaces

Fix v € (0, 2).

gé — wopreen, quantum sphere
((C7 ¢)/N’Y

quantum disk
_. (]D)a QS)/N’Y

Laws are infinite measures, which we denote by QS and QD.

QD(¢) = law of quantum disks with boundary length ¢. Then

QD — /0 TQD()dl, QD) o £

|QD(¢)| = partition function of boundary length ¢ quantum disks.
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Quantum disk with marked points

Fix v € (0,2) and m,n > 0.

Sample D from weighted measure A(D)™L(D)"QD(dD),
independently sample m bulk points and n boundary points.
Let QD,, , be the law of the (m + n)-pointed quantum surface.

®:e

QDo 3

E Rk
o

QD1

eg.,  [QDos(6)l = £QD(Y).
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Equivalence of perspectives: QS;

A sample from QS5 is a quantum surface with three marked points.

Infinitely many choices of embedding in C, but can uniquely specify
embedding by fixing the location of the three points in C.

Theorem Aru-Huang-Sun '17
Let z1, zp, z3 € C be distinct.

Sample from QS; and let (@,¢,21,22,23) be the embedding which
places the points at z, 2o, z3.

Then the law of ¢ is Czl722’Z3LF8’21)’(7’22)’(%23) for some constant

C217227Z3 .
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Equivalence of perspectives: QDg 3 and QDy ;

Theorem Cerclé 21

Let x1,x2,x3 € JID be distinct.
Sample from QD 5 and embed it as (DD, ¢, x1, X2, X3).

Then the law of ¢ is CXI7X2,X3LFB’XI)’(%XZ)’(%)@) for some constant

CXI »X2,X3

v

Theorem A.-Remy-Sun '21
Let z € D and x € ID.
Sample from QD; ; and embed it as (D, ¢, z, x).

Then the law of ¢ is CZ’XLF](S’Z)’(%X) for some constant
Cz,x € (07 OO)

.
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Equivalence of perspectives: applications

Each perspective has its own tools.
Using the equivalence of perspectives, can access both sets of tools!

@ Values of Liouville CFT correlation functions are crucial inputs

in computing observables of SLE and LQG+SLE.
[A.-Holden-Sun "21], [A.-Sun '21], [A.-Remy-Sun '22].

e Conversely, random surface methods (e.g. SLE) can be used to
solve for Liouville CFT correlation functions.
[A.-Remy-Sun '21], [A. '23], [A.-Remy-Sun-Zhu '23].
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Equivalence of perspectives: applications

Each perspective has its own tools.
Using the equivalence of perspectives, can access both sets of tools!

@ Values of Liouville CFT correlation functions are crucial inputs

in computing observables of SLE and LQG+SLE.
[A.-Holden-Sun "21], [A.-Sun '21], [A.-Remy-Sun '22].

e Conversely, random surface methods (e.g. SLE) can be used to

solve for Liouville CFT correlation functions.
[A.-Remy-Sun '21], [A. '23], [A.-Remy-Sun-Zhu '23].

Next lecture: details on the following tools/solvability.
@ Liouville CFT corr functions can be solved via BPZ and OPE.
@ LQGHSLE coupling, inputs from random planar maps.
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