Solvability of Schramm-Loewner Evolution via Liouville Quantum Gravity, Lectures I and II

#### Morris Ang University of California San Diego

Summer School on Probabilistic Methods in QFT Hausdorff Research Institute for Mathematics, May 2025

#### • What is Schramm-Loewner evolution?

- Two solvability results linking SLE and conformal field theory.
- Gaussian free field and Gaussian multiplicative chaos.
- Introduction to Liouville quantum gravity.

## What is Schramm-Loewner evolution $SLE_{\kappa}$ ?

SLE is a random non-self-crossing fractal curve.

It connects two boundary points of a simply connected domain.

"Roughness" parameter  $\kappa$ :  $\dim_{\text{Hausdorff}}(\text{SLE}_{\kappa}) = \min(1 + \frac{\kappa}{8}, 2).$ 



#### Schramm-Loewner evolution with $\kappa = 3$



Simple phase:  $\kappa \leq 4$ .

#### Schramm-Loewner evolution with $\kappa = 6$



Self-hitting phase:  $4 < \kappa < 8$ .

#### Schramm-Loewner evolution with $\kappa = 32$



Space-filling phase:  $\kappa > 8$ .

# $SLE_{\kappa} =$ scaling limit of statistical physics interfaces



Image by Duminil-Copin

 $SLE_6 \leftrightarrow Percolation [Smirnov '01]$ 

# $SLE_{\kappa} =$ scaling limit of statistical physics interfaces

Critical Ising model on the square lattice



Image by Peltola

 $\mathsf{SLE}_3\longleftrightarrow\mathsf{Ising model}\;[\mathsf{Smirnov}\;'07]$ 

# $SLE_{\kappa} =$ scaling limit of statistical physics interfaces

Uniform spanning tree with Dobrushin boundary conditions



Image from Yong Han-Mingchang Liu-Hao Wu '20.

 $SLE_8 \leftrightarrow Uniform spanning tree [Lawler-Schramm-Werner '01]$ 

Simply-connected lattice domain with two boundary points.

Consider set of all simple lattice paths between the two points.

Self-avoiding walk = sample from this set weighted by  $c^{-\text{length}}$ , where c is the connectivity constant of the lattice.

Does self-avoiding walk converge to  $SLE_{\kappa}$  with  $\kappa = 8/3$ ?

# Conjectural properties of scaling limits of discrete models

Let SLE' = scaling limit of critical statistical physics interface.

Conformal invariance (in law).

SLE' in  $D_2 \stackrel{d}{=} SLE'$  in  $D_1$  under conformal map  $D_1 \rightarrow D_2$ .



#### Domain Markov property.

Conditioned on SLE' curve run until stopping time, remainder of curve has the law of SLE' in complement.



# Conjectural properties of scaling limits of discrete models

Let SLE' = scaling limit of critical statistical physics interface.

Conformal invariance (in law).

SLE' in  $D_2 \stackrel{d}{=} SLE'$  in  $D_1$  under conformal map  $D_1 \rightarrow D_2$ .



#### Domain Markov property.

Conditioned on SLE' curve run until stopping time, remainder of curve has the law of SLE' in complement.



Goal: Identify all random curves satisfying these properties.

Consider curve in upper half-plane from 0 to  $\infty$ .

Schramm '01: definition of Stochastic Loewner evolution via SDE

$$dg_t(z) = rac{2}{g_t(z) - \sqrt{\kappa}B_t} dt.$$

We will not explain this stochastic differential equation today.

Brownian motion  $B_t$  is the only random continuous process satisfying scale invariance and strong Markov property,

so SLE is the only curve satisfying **conformal invariance** and **domain Markov property**.

Loosely speaking, three approaches.

• SDE definition

$$dg_t(z) = rac{2}{g_t(z) - \sqrt{\kappa}B_t} dt.$$

Use martingales, Itô calculus, etc.

• Coupling with random generalized function called **Gaussian free field** (GFF).

#### • Coupling with Liouville quantum gravity.

We will focus on third approach, and how it allows us to prove predictions from CFT.

- What is Schramm-Loewner evolution?
- Two solvability results linking SLE and conformal field theory.
- Gaussian free field and Gaussian multiplicative chaos.
- Introduction to Liouville quantum gravity.

# 1. Conformal loop ensemble (CLE)

For  $\kappa \in (8/3, 8)$ ,  $CLE_{\kappa}$  is a random collection of non-crossing loops which each locally look like  $SLE_{\kappa}$ .

Arises from scaling limits of lattice model interfaces.



There is a canonical notion of CLE for the disk and sphere.

Conformally invariant in law.

# 1. Outermost CLE<sub>4</sub> loops in disk (image by David Wilson)



## 1. Three point nesting function for CLE on the sphere



Let  $\kappa \in (8/3, 8)$  and  $n = -2\cos(4\pi/\kappa) \in (0, 2]$ . Let  $z_1, z_2, z_3 \in \mathbb{C}$  and  $X_{\varepsilon}(z_1) = \#$  loops separating ball  $B_{\varepsilon}(z_1)$  from  $z_2, z_3$ .

### 1. Three point nesting function for CLE on the sphere



Let  $\kappa \in (8/3, 8)$  and  $n = -2\cos(4\pi/\kappa) \in (0, 2]$ . Let  $z_1, z_2, z_3 \in \mathbb{C}$  and  $X_{\varepsilon}(z_1) = \#$  loops separating ball  $B_{\varepsilon}(z_1)$  from  $z_2, z_3$ . Let  $n_1, n_2, n_3 \in (0, 2]$  and  $\Delta_i = \Delta_i(n_i, \kappa)$  (formula omitted).

$$\begin{split} &\lim_{\varepsilon \to 0} \mathbb{E} \left[ \prod_{i=1}^{3} \varepsilon^{-\Delta_{i}} \left( \frac{n_{i}}{n} \right)^{\chi_{\varepsilon}(z_{i})} \right] \\ &= \left( \prod_{i=1}^{3} |z_{i} - z_{i+1}|^{-\Delta_{i} - \Delta_{i+1} + \Delta_{i+2}} \right) C_{\kappa}(\Delta_{1}, \Delta_{2}, \Delta_{3}). \end{split}$$

# 1. CLE nesting structure constant = imaginary DOZZ

Reparametrize  $\widehat{\alpha}_i = \widehat{\alpha}_i(\Delta_i, \kappa)$  (formula omitted).

$$\mathcal{R}^{ ext{nest}}_{\kappa}(\widehat{lpha}_1,\widehat{lpha}_2,\widehat{lpha}_3):=rac{\mathcal{C}_{\kappa}(\Delta_1,\Delta_2,\Delta_3)}{\sqrt{\mathcal{C}_{\kappa}(\Delta_1,\Delta_1,0)\mathcal{C}_{\kappa}(\Delta_2,\Delta_2,0)\mathcal{C}_{\kappa}(\Delta_3,\Delta_3,0)}}.$$

Theorem A.-Cai-Sun-Wu '24  $R_{\kappa}^{\text{nest}}(\widehat{\alpha}_1, \widehat{\alpha}_2, \widehat{\alpha}_3) = C_{\sqrt{\kappa}/2}^{\text{ImDOZZ}}(\widehat{\alpha}_1, \widehat{\alpha}_2, \widehat{\alpha}_3).$ 

Physics derivation by [Ikhlef-Jacobsen-Saleur '15], who also gave strong empirical evidence via lattice model approximation.

Discrete interpretation of  $R_{\kappa}^{\text{nest}}$ : In O(n) loop model, give different weight  $n_i$  to loops separating  $z_i$  from other two points.

# 1. Imaginary DOZZ formula

The formula for  $C_b^{\text{ImDOZZ}}(\widehat{\alpha}_1, \widehat{\alpha}_2, \widehat{\alpha}_3)$  is

$$A\Upsilon_b(2b-b^{-1}+\sum\widehat{\alpha}_i)\prod_{i=1}^3\frac{\Upsilon_b(\widehat{\alpha}_1+\widehat{\alpha}_2+\widehat{\alpha}_3-2\widehat{\alpha}_i+b)}{\sqrt{\Upsilon_b(2\widehat{\alpha}_i+b)\Upsilon_b(2\widehat{\alpha}_i+2b-b^{-1})}},$$

where  $\Upsilon_b$  is Zamolodchikov's special holomorphic function defined on  $\mathbb{C}$  such that for  $Q = b + b^{-1}$  and 0 < Rez < Q,

$$\log \Upsilon_b(z) = \int_0^\infty \left( (\frac{Q}{2} - z)^2 e^{-t} - \frac{\sinh^2(\frac{Q}{2} - z)}{\sinh(bt)\sinh(b^{-1}t)} \right) \frac{dt}{t}.$$

The **imaginary DOZZ formula** was introduced in physics by [Schomerus '03], [Zamolodchikov '05], [Kostov-Petkova '07] as a structure constant for CFT with central charge  $1 - 6(\frac{\sqrt{\kappa}}{2} - \frac{2}{\sqrt{\kappa}})^2$ .

Natural extension of the structure constants for minimal model CFTs to continuously varying parameters.

## 2. Critical percolation connectivities



Critical site percolation on triangular lattice with mesh size  $\delta$ .  $P_n^{\delta}(z_1, \ldots, z_n) = \text{probability } n \text{ points lie in the same cluster.}$ There exists limit [Camia '23]:

$$P_n(z_1, \dots, z_n) := \lim_{\delta \to 0} \pi_1(\delta)^{-n} P_n^{\delta}(z_1, \dots, z_n),$$
  
where  $\pi_1(\delta) = \mathbb{P}[0 \leftrightarrow \partial B_1(0)].$ 

## 2. Three-point connectivity constant

$$P_n(z_1,\ldots,z_n):=\lim_{\delta\to 0}\pi_1(\delta)^{-n}P_n^{\delta}(z_1,\ldots,z_n).$$

This limit is conformally covariant [Camia '23].

Three-point connectivity constant

$$\frac{P_3(z_1, z_2, z_3)}{\sqrt{P_2(z_1, z_2)P_2(z_2, z_3)P_2(z_3, z_1)}}.$$

• Does not depend on  $z_1, z_2, z_3$ .

 Conjecturally universal: not dependent on microscopic properties (choice of lattice, definition of "lie in the same cluster").
(choice of renormalization factor π<sub>1</sub>(δ) disappears in the ratio.) Conjecture coming from CFT: with  $b = \frac{2}{\sqrt{6}}$ ,

$$\frac{P_3(z_1, z_2, z_3)}{\sqrt{P_2(z_1, z_2)P_2(z_2, z_3)P_2(z_3, z_1)}} =$$

$$\sqrt{2}C_b^{\text{ImDOZZ}}(\frac{1}{4b}-\frac{b}{2},\frac{1}{4b}-\frac{b}{2},\frac{1}{4b}-\frac{b}{2})\approx 1.022.$$

#### Theorem

A.-Cai-Sun-Wu '24

Above conjecture for the three-point connectivity constant holds.

Baojun Wu's talk on Friday: proof of this result!

- What is Schramm-Loewner evolution?
- Two solvability results linking SLE and conformal field theory.
- Gaussian free field and Gaussian multiplicative chaos.
- Introduction to Liouville quantum gravity.

#### Gaussian free field on the unit disk ${\mathbb D}$

Dirichlet inner product  $\langle f, g \rangle_{\nabla} := \frac{1}{2\pi} \int_{\mathbb{D}} \nabla f(z) \cdot \nabla g(z) \, dz$ .

Consider the space of smooth functions f on  $\overline{\mathbb{D}}$  with  $\langle f, f \rangle_{\nabla} < \infty$ and mean zero on  $\partial \mathbb{D}$ .

Let  $H(\mathbb{D})$  be its closure with respect to  $\langle \cdot, \cdot \rangle_{\nabla}$ .

Let  $f_1, f_2, \ldots$  be an orthonormal basis of  $H(\mathbb{D})$ .

Sample  $a_1, a_2, \ldots$  i.i.d. N(0, 1) and set

$$h=\sum_i a_i f_i.$$

This limit a.s. exists in the space of distributions (more strongly,  $h \in H^{-\varepsilon}_{loc}(\mathbb{D})$  for any  $\varepsilon > 0$ ).

*h* is the (free boundary) GFF with mean zero on  $\partial \mathbb{D}$ .

# Gaussian free field

Mean zero Gaussian field h on  $\mathbb{D}$  with covariance

$$\mathbb{E}[h(z)h(w)] = -\log|z-w| - \log|1-z\overline{w}|.$$

- *h* is a **distribution** or **generalized function**:
  - h(z) is not well-defined;
  - $\int_{\mathbb{C}} h(z)\rho(dz)$  is defined when  $\rho$  is sufficiently regular, e.g.,  $\rho(dz) = f(z)dz$  for smooth compactly supported f.





(Simulations by Minjae Park, Henry Jackson.)

### Gaussian free field

Mean zero Gaussian field h on  $\mathbb{D}$  with covariance

 $\mathbb{E}[h(z)h(w)] = -\log|z-w| - \log|1-z\overline{w}|.$ 

*h* is a **distribution** or **generalized function**:

- h(z) is not well-defined;
- Let  $h_{\varepsilon}(z)$  be the average of h on radius- $\varepsilon$  circle around z.
- h is normalized so that  $h_1(0) = 0$ .

Do a calculation on the blackboard:

$$\begin{array}{ll} \operatorname{Var} h_{\varepsilon}(z) = -\log \varepsilon + O(1) & \text{ for } z \in \mathbb{D}. \\ \\ \varepsilon^{\gamma^2/2} e^{\gamma h_{\varepsilon}(z)} \text{ small with high probability,} \\ \\ \text{ but } \varepsilon^{\gamma^2/2} \mathbb{E}[e^{\gamma h_{\varepsilon}(z)}] \text{ is constant order.} \end{array}$$

#### Gaussian multiplicative chaos

Let *h* be a Gaussian free field on  $\mathbb{D}$ . Let  $h_{\varepsilon}(z)$  be the average of *h* on the radius- $\varepsilon$  circle around *z*. Let  $\gamma \in (0, 2)$ . Can define a measure

$$A_h^{\gamma}(dz) := \lim_{\varepsilon o 0} \varepsilon^{\gamma^2/2} e^{\gamma h_{\varepsilon}(z)} dz.$$

This is an example of **Gaussian multiplicative chaos**. Kahane '85, Robert-Vargas '08, Duplantier-Sheffield '08





Discretization of  $A_h^{\gamma}$ , squares have comparable  $A_h^{\gamma}$ -mass.

#### Gaussian multiplicative chaos

Let  $\gamma \in (0, 2)$ . Can define a measure  $A_h^{\gamma}(dz) := \lim_{\varepsilon \to 0} \varepsilon^{\gamma^2/2} e^{\gamma h_{\varepsilon}(z)} dz.$ 

Measure  $A_h^{\gamma}$  is supported on the set of  $\gamma$ -thick points:

$${\mathcal T}_h^\gamma = \{z \in {\mathbb D} \ : \ \lim_{arepsilon o 0} h_arepsilon(z)/\log(1/arepsilon) = \gamma\}.$$

Hausdorff dimension of  $T_h^{\gamma}$  is  $2 - \gamma$ .





Discretization of  $A_h^{\gamma}$ , squares have comparable  $A_h^{\gamma}$ -mass. 28/49

- What is Schramm-Loewner evolution?
- Two solvability results linking SLE and conformal field theory.
- Gaussian free field and Gaussian multiplicative chaos.
- Introduction to Liouville quantum gravity.

#### What is a planar map?



Embedding of planar graph into Riemann sphere  $\mathbb{C} \cup \{\infty\}$ , modulo homeomorphisms of  $\mathbb{C} \cup \{\infty\}$ .

**Uniform random planar map** is a uniform sample from the set of planar maps with *n* faces.

### Random planar map simulation



Random planar map, spring embedding in  $\mathbb{R}^3$  (Thomas Budzinski).

# Random planar map simulation



Random planar map, harmonic embedding in  $\mathbb{D}$  (Jason Miller).

# Random planar map simulation



Random planar map, harmonic embedding in  $\mathbb{D}$  (Jason Miller). Scaling limit of this random geometry is **Liouville quantum gravity**.

## Random planar maps $\rightarrow$ Liouville quantum gravity





*n*-face random planar map Liouville quantum gravity Conformally embedded in  $\mathbb{D}$ .

Discrete area measure  $A_n$ , boundary measure  $L_n$ , metric  $D_n$ . General conjecture:

 $(A_n, L_n, D_n)$  converges to a continuum triple  $(A_h^{\gamma}, L_h^{\gamma}, D_h^{\gamma})$  called **Liouville quantum gravity** defined via Gaussian free field.

# Random planar maps $\rightarrow$ Liouville quantum gravity





*n*-face random planar map Liouville quantum gravity Conformally embedded in  $\mathbb{D}$ .

Discrete area measure  $A_n$ , boundary measure  $L_n$ , metric  $D_n$ . General conjecture:

 $(A_n, L_n, D_n)$  converges to a continuum triple  $(A_h^{\gamma}, L_h^{\gamma}, D_h^{\gamma})$  called **Liouville quantum gravity** defined via Gaussian free field.

Proved for important special cases: Gwynne-Miller-Sheffield '17 (mated-CRT map, harmonic embedding), Holden-Sun '19 (uniform RPM, Cardy embedding),

Bertacco-Gwynne-Sheffield '23 (mated-CRT map, Smith embedding).

### Liouville quantum gravity parameter $\gamma$

"Larger  $\gamma \implies$  rougher surface".

 $\gamma = \sqrt{2}$ : Tree-decorated random planar map.

- $\gamma = \sqrt{8/3}$ : Uniform random planar map.
- $\gamma = \sqrt{3}$ : Ising-decorated random planar map.
- $\gamma=$  2: GFF-decorated random planar map





34 / 49

# Two perspectives on Liouville quantum gravity

#### Liouville conformal field theory (LCFT)

David, Guillarmou, Kupiainen, Rhodes, Vargas, ...

- 2D quantum field theory with conformal symmetries.
- Object of interest: Correlation function.

#### Random surface perspective

Sheffield, Duplantier-Miller-Sheffield, ...

- Describe scaling limit of random planar maps.
- Object of interest: quantum surface

("= measure space with conformal structure").

These two perspectives describe the same random geometry! Lecture II: Present both perspectives, explain equivalence. A **quantum field theory** is a collection of numbers called **correlation functions**, that arise as expectations of a random field.

A conformal field theory is a QFT with conformal symmetries.

Liouville conformal field theory was introduced by Polyakov '81 in the context of bosonic string theory.

One of the most fundamental 2D CFTs.

Mathematically constructed by

- David-Kupiainen-Rhodes-Vargas '14 (sphere)
- Huang-Rhodes-Vargas '15 (disk)
- Guillarmou-Rhodes-Vargas '16 (closed surfaces)
- Remy '17 (annulus)

## Liouville CFT: the Liouville field on ${\mathbb D}$

Let  $\gamma \in (0,2)$  and  $Q = \frac{\gamma}{2} + \frac{2}{\gamma}$ . Let  $P_{\mathbb{D}}$  be the law of the GFF on  $\mathbb{D}$  with average zero on  $\partial \mathbb{D}$ .

#### Liouville field on ${\mathbb D}$

Huang-Rhodes-Vargas '15

Sample  $(h, \mathbf{c})$  from  $P_{\mathbb{D}} \times [e^{-Qc}dc]$  on  $H^{-1}(\mathbb{D}) \times \mathbb{R}$ . The Liouville field is  $\phi = h + \mathbf{c}$ . Let  $LF_{\mathbb{D}}$  be the measure on  $H^{-1}(\mathbb{D})$  describing the law of  $\phi$ .

## Liouville CFT: the Liouville field on ${\mathbb D}$

Let  $\gamma \in (0,2)$  and  $Q = \frac{\gamma}{2} + \frac{2}{\gamma}$ . Let  $P_{\mathbb{D}}$  be the law of the GFF on  $\mathbb{D}$  with average zero on  $\partial \mathbb{D}$ .

#### Liouville field on ${\mathbb D}$

Huang-Rhodes-Vargas '15

Sample  $(h, \mathbf{c})$  from  $P_{\mathbb{D}} \times [e^{-Qc} dc]$  on  $H^{-1}(\mathbb{D}) \times \mathbb{R}$ . The Liouville field is  $\phi = h + \mathbf{c}$ . Let  $LF_{\mathbb{D}}$  be the measure on  $H^{-1}(\mathbb{D})$  describing the law of  $\phi$ .

Formally, Liouville field with insertion of size  $\alpha \in \mathbb{R}$  at  $z \in \mathbb{D}$  is  $LF_{\mathbb{D}}^{(\alpha,z)} = e^{\alpha\phi(z)}LF_{\mathbb{D}}(d\phi).$ 

Can rigorously define as  $LF_{\mathbb{D}}^{(\alpha,z)} := \lim_{\varepsilon \to 0} \varepsilon^{\alpha^2/2} e^{\alpha \phi_{\varepsilon}(z)} LF_{\mathbb{D}}(d\phi)$ . Near *z*, field looks like GFF  $-\alpha \log |\cdot -z|$ .

## Correlation functions of Liouville CFT

LCFT disk one-point correlation function for  $\mu, \mu_B \ge 0$ :

$$\langle e^{\alpha\phi(0)}\rangle_{\mathbb{D}} := \int e^{-\mu A_{\phi}(\mathbb{D}) - \mu_{B}L_{\phi}(\partial\mathbb{D})} \mathrm{LF}_{\mathbb{D}}^{(\alpha,0)}(d\phi).$$

Encodes law of  $(A_{\phi}(\mathbb{D}), L_{\phi}(\mathbb{D}))$  for  $\phi \sim LF_{\mathbb{D}}^{(\alpha,0)}$ .

LCFT disk one-point correlation function for  $\mu, \mu_B \ge 0$ :

$$\langle e^{\alpha\phi(0)}\rangle_{\mathbb{D}} := \int e^{-\mu A_{\phi}(\mathbb{D}) - \mu_B L_{\phi}(\partial \mathbb{D})} \mathrm{LF}_{\mathbb{D}}^{(\alpha,0)}(d\phi).$$

Encodes law of  $(A_{\phi}(\mathbb{D}), L_{\phi}(\mathbb{D}))$  for  $\phi \sim LF_{\mathbb{D}}^{(\alpha,0)}$ . Can define Liouville field, correlation functions for general surfaces, e.g. Riemann sphere  $\widehat{\mathbb{C}}$ :

$$\langle \prod_{i=1}^{3} e^{\alpha_i \phi(z_i)} \rangle_{\widehat{\mathbb{C}}} := \int e^{-\mu A_{\phi}(\widehat{\mathbb{C}})} \mathrm{LF}_{\widehat{\mathbb{C}}}^{(\alpha_1, z_1), (\alpha_2, z_2), (\alpha_3, z_3)}(d\phi).$$

LCFT disk one-point correlation function for  $\mu, \mu_B \ge 0$ :

$$\langle e^{\alpha\phi(0)}\rangle_{\mathbb{D}} := \int e^{-\mu A_{\phi}(\mathbb{D}) - \mu_B L_{\phi}(\partial \mathbb{D})} \mathrm{LF}_{\mathbb{D}}^{(\alpha,0)}(d\phi).$$

Encodes law of  $(A_{\phi}(\mathbb{D}), L_{\phi}(\mathbb{D}))$  for  $\phi \sim LF_{\mathbb{D}}^{(\alpha,0)}$ . Can define Liouville field, correlation functions for general surfaces, e.g. Riemann sphere  $\widehat{\mathbb{C}}$ :

$$\langle \prod_{i=1}^{3} e^{\alpha_{i}\phi(z_{i})} \rangle_{\widehat{\mathbb{C}}} := \int e^{-\mu A_{\phi}(\widehat{\mathbb{C}})} \mathrm{LF}_{\widehat{\mathbb{C}}}^{(\alpha_{1},z_{1}),(\alpha_{2},z_{2}),(\alpha_{3},z_{3})}(d\phi).$$

"Solving LCFT" = computing all correlation functions.

# Properties of LCFT correlation functions

Let  $\gamma \in (0,2)$  and  $Q = \frac{\gamma}{2} + \frac{2}{\gamma}$ . Following are necessary properties for conformal field theory.

Diffeomorphism invarianceHuang-Rhodes-Vargas '18Suppose f is a diffeomorphism from (D, g) to (D', g'). Then $\langle F(\phi) \rangle_{D',g',\mu,\mu_0} = \langle F(f \circ \phi) \rangle_{D,g,\mu,\mu_0}$ .

Weyl anomaly

#### Huang-Rhodes-Vargas '18

Suppose  $g' = e^{2\sigma}g$ . Then

$$\frac{\langle F(\phi + Q\sigma) \rangle_{D,g',\mu,\mu_{\partial}}}{\langle F(\phi) \rangle_{D,g,\mu,\mu_{\partial}}} = \left( Z_{g'}^{\rm FF} / Z_{g}^{\rm FF} \right)^{1+6Q^2}$$

where  $Z_g^{\text{FF}} = (\det' \Delta_g)^{-1/2}$  and  $\det' \Delta_g$  is the zeta-regularized determinant of Laplacian.

## Two perspectives on Liouville quantum gravity

#### Liouville conformal field theory (LCFT)

David, Guillarmou, Kupiainen, Rhodes, Vargas, ...

- 2D quantum field theory with conformal symmetries.
- Object of interest: Correlation function.

#### Random surface perspective

Sheffield, Duplantier-Miller-Sheffield, ...

- Describe scaling limit of random planar maps.
- Object of interest: quantum surface

("= measure space with conformal structure").

These two perspectives describe the same random geometry!

## Random surface perspective of LQG

Conformal embedding of a random planar map is not unique!

e.g., can apply conformal automorphism:



In definition of random surface, we will "mod out by choice of conformal embedding".

# Random surface perspective of LQG

Let  $f: D \to \tilde{D}$  be a conformal map. Let  $Q = \frac{\gamma}{2} + \frac{2}{\gamma}$ .



Define  $(D, h) \sim_{\gamma} (\widetilde{D}, \widetilde{h})$  if  $h = \widetilde{h} \circ f + Q \log |f'|$ . All members of equivalence class have same LQG measures:

$$f_*A_h^{\gamma} = A_{\widetilde{h}}^{\gamma}, \qquad f_*L_h^{\gamma} = L_{\widetilde{h}}^{\gamma}.$$

A quantum surface is an equivalence class  $(D, h)/\sim_{\gamma}$ . It is a measure space with conformal structure. (D, h) is called an **embedding** of the quantum surface. Fix  $\gamma = \sqrt{8/3}$ .

Consider a kind of planar map (triangulations, quadrangulations, ...), let  $S_n$  = set of maps with n vertices.

$$|S_n| = \operatorname{const} \cdot e^{\beta n} \cdot n^{-7/2} (1 + o_n(1)).$$

Here const and  $\beta$  are nonuniversal, but -7/2 is universal.

Two ways to remove nonuniversal terms:

- Fix *n*. In the scaling limit get **unit area quantum sphere**.
- Consider  $\bigcup_n S_n$  but weight each map by  $e^{-\beta n}$ . Scaling limit gives (free area) quantum sphere.

Fix  $\gamma \in (0, 2)$ .

Unit area quantum sphere is a quantum surface.

Constructed via GFF, motivated by scaling limit of RPM.



 $QS(a)^{\#} = law of area a quantum sphere.$ 

Non-probability measure  $QS(a) = const \times a^{-\frac{4}{\gamma^2}-2}QS(a)^{\#}$ .

Quantum sphere with no area restriction:

$$\mathrm{QS} := \int_0^\infty \mathrm{QS}(a) \, da.$$

Note: QS is an infinite measure on the space of quantum surfaces!

#### Important quantum surfaces

Fix  $\gamma \in (0, 2)$ .



Laws are infinite measures, which we denote by QS and QD.  $QD(\ell) = law$  of quantum disks with boundary length  $\ell$ . Then

$$\mathrm{QD} = \int_0^\infty \mathrm{QD}(\ell) \, d\ell, \qquad |\mathrm{QD}(\ell)| \propto \ell^{-\frac{4}{\gamma^2}-2}$$

 $|\text{QD}(\ell)| =$  partition function of boundary length  $\ell$  quantum disks.

#### Quantum disk with marked points

Fix  $\gamma \in (0, 2)$  and  $m, n \ge 0$ .

Sample  $\mathcal{D}$  from weighted measure  $A(\mathcal{D})^m L(\mathcal{D})^n QD(d\mathcal{D})$ , independently sample *m* bulk points and *n* boundary points. Let  $QD_{m,n}$  be the law of the (m + n)-pointed quantum surface.



A sample from  $QS_3$  is a quantum surface with three marked points.

Infinitely many choices of embedding in  $\widehat{\mathbb{C}}$ , but can uniquely specify embedding by fixing the location of the three points in  $\widehat{\mathbb{C}}$ .

| Theorem                                                                                                                                 | Aru-Huang-Sun '17   |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Let $z_1, z_2, z_3 \in \mathbb{C}$ be distinct.<br>Sample from OS <sub>2</sub> and let $(\widehat{\mathbb{C}}, \phi, z_1, z_2, z_3)$ be | the embedding which |
| places the points at $z_1, z_2, z_3$ .                                                                                                  | 5                   |
| Then the law of $\phi$ is $C_{z_1, z_2, z_3} LF_{\widehat{\mathbb{C}}}^{(1, z_1), (1, z_2), (1, z_3)}$<br>$C_{z_1, z_2, z_3}$ .         | for some constant   |

#### Theorem

Let  $x_1, x_2, x_3 \in \partial \mathbb{D}$  be distinct. Sample from  $QD_{0,3}$  and embed it as  $(\mathbb{D}, \phi, x_1, x_2, x_3)$ . Then the law of  $\phi$  is  $C_{x_1, x_2, x_3} LF_{\mathbb{D}}^{(\gamma, x_1), (\gamma, x_2), (\gamma, x_3)}$  for some constant  $C_{x_1, x_2, x_3}$ .

#### Theorem

A.-Remy-Sun '21

Cerclé '21

Let  $z \in \mathbb{D}$  and  $x \in \partial \mathbb{D}$ . Sample from  $QD_{1,1}$  and embed it as  $(\mathbb{D}, \phi, z, x)$ . Then the law of  $\phi$  is  $C_{z,x}LF_{\mathbb{D}}^{(\gamma,z),(\gamma,x)}$  for some constant  $C_{z,x} \in (0,\infty)$ . Each perspective has its own tools.

Using the equivalence of perspectives, can access both sets of tools!

- Values of Liouville CFT correlation functions are crucial inputs in computing observables of SLE and LQG+SLE. [A.-Holden-Sun '21], [A.-Sun '21], [A.-Remy-Sun '22].
- Conversely, random surface methods (e.g. SLE) can be used to solve for Liouville CFT correlation functions.

[A.-Remy-Sun '21], [A. '23], [A.-Remy-Sun-Zhu '23].

Each perspective has its own tools.

Using the equivalence of perspectives, can access both sets of tools!

- Values of Liouville CFT correlation functions are crucial inputs in computing observables of SLE and LQG+SLE. [A.-Holden-Sun '21], [A.-Sun '21], [A.-Remy-Sun '22].
- Conversely, random surface methods (e.g. SLE) can be used to solve for Liouville CFT correlation functions. [A.-Remy-Sun '21], [A. '23], [A.-Remy-Sun-Zhu '23].

Next lecture: details on the following tools/solvability.

- Liouville CFT corr functions can be solved via BPZ and OPE.
- LQG+SLE coupling, inputs from random planar maps.