DISCRETE DIRECTIONS IN HARMONIC ANALYSIS

ZANE KUN LI, DAMARIS SCHINDLER, RAJULA SRIVASTAVA, CHRISTOPH THIELE

1. Broad Directions

- I. Recent developments in counting rational and lattice points near smooth manifolds using harmonic analysis. Connections to Diophantine approximation.
- II. Estimates for Dirichlet polynomials and general exponential sums.
- III. Consequences of Diophantine approximation and counting results to harmonic analysis.
- IV. Restriction/Kakeya phenomena in discrete settings and Arithmetic Progression Problems
- V. Discrete restriction

2. Papers

The instructions are either with respect to the latest arXiv version or the journal version of the paper, depending on whichever is provided.

I. Counting Rational Points near Smooth Manifolds.

(1) Integral points close to a space curve

Jing-Jing Huang Journal Link: https://doi.org/10.1007/s00208-019-01832-5 Remarks: You can blackbox Lemmas 1-3, but it will be good to give a motivation for them (17 pages).

- (2) The density of rational points near hypersurfaces *Jing-Jing Huang* **Journal Link:** https://doi.org/10.1215/00127094-2020-0004 Remarks: 33 pages, only Prove Theorem 1 (Section 5). If time, Diophantine appli-cations (Section 4 and Section 9).
- (3) Lattice points on a curve via l² decoupling Daishi Kiyohara
 Journal Link: https://doi.org/10.1142/S1793042124500994
 Remarks: Present the whole paper. You can state and use decoupling for the moment curve as a blackbox.

Date: Sep 2025.

2 ZANE KUN LI, DAMARIS SCHINDLER, RAJULA SRIVASTAVA, CHRISTOPH THIELE

II. Dirichlet series and Riemann zeta function.

(4) On the Distribution of Dirichlet Sums

Jean Bourgain

Journal Link: https://doi.org/10.1007/BF03341964

Remarks: The goal is to present Bourgain's observation that Montgomery's conjecture for Dirichlet series implies Kakeya. For further references: see the works mentioned in https://mathoverflow.net/q/137635 and Section 10 of Ben Green's notes: http://people.maths.ox.ac.uk/greenbj/papers/rkp.pdf

(5) New large value estimates for Dirichlet polynomials: Part 1 Larry Guth, James Maynard

arXiv Link: https://arxiv.org/abs/2405.20552

Remarks: Present Sections 1-7 (till Page 23). This covers the Introduction and the harmonic analysis component. Persons presenting parts of Guth-Maynard will need to work together to ensure a smooth transition between presentations.

(6) New large value estimates for Dirichlet polynomials: Part 2

Larry Guth, James Maynard

arXiv Link: https://arxiv.org/abs/2405.20552

Remarks: Present Sections 8-12 (Pages 24- 44). This is the additive combinatorics part and conclusion of the proof. If time permits, you can briefly comment on applications to the Riemann zeta function. Persons presenting parts of Guth-Maynard will need to work together to ensure a smooth transition between presentationsn.

III. Consequences of Diophantine approximation and counting results to harmonic analysis.

(7) Bounds for the maximal function associated to periodic solutions of onedimensional dispersive equations

A. Moyua, L. Vega Journal Link: https://doi.org/10.1112/blms/bdm096 Remarks: Present the entire paper (12 pages).

- (8) A note on maximal operators for the Schrödinger equation on T¹ *Yuqiu Fu, Kevin Ren, and Haoyu Wang* **arXiv Link:** https://arxiv.org/abs/2307.12870 **Remarks:** Present the entire paper (13 pages).
- (9) An L⁴ maximal estimate for quadratic Weyl sums Alex Barron
 Journal Link: https://doi.org/10.1093/imrn/rnab182
 Remarks: Present proof of Theorem 1.1 (Section 2 of paper)
- (10) L^p maximal estimates for quadratic Weyl sums Roger Baker
 Journal Link: https://doi.org/10.1007/s10474-021-01173-3

Remarks: This paper (10 pages) reproves Barron's result using standard circle method machinery. Present the entire paper though feel free to cite standard lemma's from Vaughan's circle method book.

(11) A note on the Schrödinger maximal function

Jean Bourgain Journal Link: https://doi.org/10.1007/s11854-016-0042-8 Remarks: See Pierce's exposition (*On Bourgain's counterexample for the Schrödinger* maximal function, 36 pages, https://doi.org/10.1093/qmath/haa032) for additional understanding and explanation. Present Bourgain's paper (4 pages).

- (12) Uniform counterexamples to the convergence problem for periodic dispersive equations with a polynomial symbol Daniel Eceizabarrena, Xueying Yu arXiv Link: https://arxiv.org/abs/2408.13935
 Remarks: Present the entire paper (12 pages). Bourgain's counterexample was generalized here to equations of the form iu_t + P(D)u = 0.
- (13) Reversing a philosophy: from counting to square functions and decoupling *P. Gressman, S. Guo, L. Pierce, J. Roos, and P-Y Yung* Journal Link: https://doi.org/10.1007/s12220-020-00593-x
 Remarks: Only present the proof of Theorem 1.2 via Proposition 1.3 (leave out Section 3). Does Proposition 1.3 remind oneself of a particular lemma in number theory?
- (14) A distinction between the paraboloid and the sphere in weighted restriction

Alex Iosevich, Ruixiang Zhang arXiv Link: https://arxiv.org/abs/2312.12779 Remarks: Present the entire paper (17 pages).

IV. Restriction/Kakeya phenomena in discrete settings and Arithmetic Progression Problems.

- (15) Restriction and Kakeya phenomena for finite fields Gerd Mockenhaupt and Terence Tao Journal Link: https://doi.org/10.1215/S0012-7094-04-12112-8 Remarks: Just present Page 35-52 (Sections 1-6, inclusive).
- (16) Finite field restriction estimates for the paraboloid in high even dimensions
 Alex Iosevich, Doowon Koh, and Mark Lewko
 Journal Link: https://doi.org/10.1016/j.jfa.2019.108450
 Remarks: Present the complete paper (16 pages)
- (17) On the size of Kakeya sets in finite fields Zeev Dvir
 Journal Link: https://doi.org/10.1090/S0894-0347-08-00607-3

4 ZANE KUN LI, DAMARIS SCHINDLER, RAJULA SRIVASTAVA, CHRISTOPH THIELE

Remarks: Present the complete paper (5 pages).

- (18) The p-adic Kakeya conjecture Bodan Arsovski
 Journal Link: https://doi.org/10.1090/jams/1021
 Remarks: Present the complete paper (12 pages). Note that the journal version has quite a few differences from the arXiv version (namely the former also proves the maximal estimate), please read the journal version.
- (19) On large subsets of Fⁿ_q with no three-term arithmetic progression Jordan S. Ellenberg, Dion Gijswijt
 Journal Link: http://dx.doi.org/10.4007/annals.2017.185.1.8
 Remarks: Present the entire paper (5 pages).

V. Discrete restriction.

(20) Improved discrete restriction for the parabola

Shaoming Guo, Zane Kun Li, Po-Lam Yung

Journal Link: https://dx.doi.org/10.4310/MRL.2023.v30.n5.a4 Remarks: One can assume the standard heuristics about the locally constant property/uncertainty principle (which are heuristics over \mathbb{R} but rigorous over \mathbb{Q}_p and start reading from Section 4. The key point will be to present the proof of Propositon 6.3 (Section 7 onwards).

 (21) Scale invariant Strichartz estimates on tori and applications Rowan Killip and Monica Visan
 Journal Link: https://dx.doi.org/10.4310/MRL.2016.v23.n2.a8
 Remarks: Just present Section 2.