


HEBBIAN NEURAL NETWORKS

The most famous example is HN
,
but we will see also

other examples.
start with a basic nitroduction on HN

where I all recall its kitinspiration
Next I will present some vanations on the there

I

evidencing advantages and drawbacks

Next I will present an analytical method to tackle

these models which is based on Guerra's interpolation ↑

This method suggests a bridge between associate

memories and suiple models for ML
, specificallyM

Iall there review BMs and everage the knowledge
available for HNS to get some strategies for an

effective traing
.

Finally ,
I all provide a brief aciview on modern

architecture for hektions networks, specifically deuse and

modular .

Our
journey

will span roughly 50 years
.
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[A] Systems", CUP 2006
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creeophysiologist - logician)
Mimics the threshold mechanism underlyingReactivation of
a biological muson

Schematically
220 JL x: 20

, 13 i = 1, ..,
N

-
2012 O- y ye 20, 23

x30
- Ji EIR

·

ot
U=
y

= G(u - ut) ,
VER firing threshold

"Static" version of the Rosenblats paceptions -where

I keep synaptic weights quenched .
Even if we are not

interested is how the weights should be designed to reach

a certain tast it is mi portant to recoll shot
, if we interpret

& = (x1 . .

., 2) as an unput and yeG0 , 16 as an output



This knid of objectsi very limited in the sause that

the input-output relation's

M : 2 = 40 , 25
*
+ 40 , 29

that can be recovered are only those linearly separable
whatever the choice for the weights
FBEIRV St ER

M(z) = *(B) ,
that e = -

+

US -

St
. Ba > 0140) treet (12)

-

On the other hand if we combine MP nauons together we

can obtain a networt of MP neurons whose info processing

capabilities is by for increased.

(t) (t)

e Vi Trixi
(t+1)

xi = 0(u - vi)

23

Given the network structure
, the update

of neuron i implies a revision of the signal acting on the

adjacent murons
, therefore it is mitable to look at this

process dynamically and introduce a discrete time unit



vit-ri
*

+L Te Iro
*

- biological meaningful z ind Dz Z

- computationally convenient

Pz : Elz] = o El] = J . PECE) dz

ETz3] = I

& 40 ,15 +
x
= [

+ 1)

· = sqn [t
*

+ +z]

= Tico") = E Tri o* hi

um un

internal field external field
hi = - 2U + bri

(t+1)

a
Ou

T=0 noiseless (deterministic) dynamics
(t) (t+1)

To 10 + = +1 2

P..
(t)



NEURONAL DYNAMICS [CRS]

T20 noisy /stochastic dynamics

Tt X Med(z) =0 Rad(0) Fi
,

t

Lef X-Rad(P)

P(X = + 1) =

2 p = 2 - P(x = - 1)
, ptE-2

,
+ 1]

# Pz symmetric

gz(
: = J Pecus du

Prob to = = 2] = g)

# Gz() = [extanh (G)] r

PECE) = E [2-tarh (E1] &
No, 2) -> &Tz + ef(F)]



sequential select [

casynch) & Prob [o
+

= = 1] = g(fTiy+)
=

parallel Prob = g)
0fit,

(synch .)

Pep If T = JT , diag (7) 10
,
I stationary

L (Ei]
,h) = -- Lyapunov funcioa

=-_ Fijij - Zhio
2 +

, j

#LN O wi
2

&

LIE) lower-bounded minima - fixed point
-

7t
* -IR st ((f' ) = (( ***) + 1 +* [CkS]

input - outputE(510)
G(d) f(x)

-

-

Design themachine (T, 1) st a suitable input-output relation
is reproduced.



ATTRACTOR NEURAL NETWORKS

this kind of mechanism justifies the name of thiscas

of WNs

Project config. on a 2D space
Detect fixed points and denote

them as ZM with M
= 1, ---,

-~ 3 E2-1,+ 25V

We can also distinguish the

related attraction basins denoted
-

as Br .

that is
I

Br = -> 5((00) = 3M doomed to end up

Typical tasks as pattern reconstruction/denoising/retrieval
i.e, I' corrupted/partial version of EM

Associative memories

to this
purposee we need to design a network sit .

- host many attractors

- non-zero basins

-trainable (easy algorithm , fixed points subtably located



task : retrieval

EP meant as vectors encoding information
-

leg biw fricture +> entries as pixels)
to be retrieved starting with a suitable input ,

then for &M must correspond to the minima of LNCO; I,)-

-

and this requires that Jij's must depend on the 's

Def Retrieval

we say that a n .
n

. with J =J (5) retrieves a pattern
M

if EM is 18
,
21-stable

,
E

,
82

d (5,3M) 5 then did/LE

A fixed point is justa 10
,
0)-stable state

-
-



Crucial J = J /[EmSp= 1
, ...

k)

Simple taske .ZM's perfectly
available I do not need training

routines but choose I based on some bis inspired approach
o

by construction requiring
that she taste is fulfilled

- bio inspired a Hebb's rules
(the organizationofbehase)

theretical postulate of
which later

"neurons
that frie "

"

t found
exp-

evidence

Toof

Jij & time scale

are much

thanzo tabula rosanullmatix) I unapse
as

neurons

J3
additive

Tip -> =+

T : JT not biological : from this point we will abandon

- local the biological pathway
- simple i



Does this rull work ?

Two short answers - it is worth going
on

·1 p = r (
~

Jij= makes Lyapunov function (2 = 2)
lri-ext. witN

L(E ; ]) = LEM ; ]) ⑭
E = EM p= 1

,
---, F-

P
.

· k = 2

Zij= 5 h= =
und Rod(0)

Luc ; 1) =- Mattismodel '76

=a
=-wwol

- L (32 ; J) global minima

in anology with FM system -> magnetization

Def Mattis magnetizion

mu : = Li T - 2
,+

to be extended as mp :=

↳ (0 : ])=m -me
=

energy function



- computational approach -> kohonen's projection full '70s

no biological bias

↳ hij = 35 320 vi

(v)

=D 8 = 3M
-

E = sqn (y . 8) = sqn(m) = zM

basically we are asking zeigenector for I
in particular , if we set d = 1

bij= ⑪

Cruise kn

J idempotent ⑳

Jiji= (C) O

mu

project j intony j

now & for per , therefore this projection filters out

the component ofoj that is I t



In the following adopt J = E
.ST

Look the set of Nnuonsas a system of N interacting
units

evolving according to the evolution
rule introduced before, where

LIE : ]) plays as E10; J)

-> basic ingredients of the Hopfield model

Before proceeding it
is north spending

a few
words on the

hystorical context
where these models

and algorithms were
introduced

In fact ,
a wide variety of models

had been proposed to

the seminal
account for pattern recognition ,

even before

work by Hopfield in 182.

Nakano 'E/ (1972)

Khonen & Amari who
introduced the idea of building asso

ciative memories
with recurrentrual

networks , where one

creates specificetable microscopic
network states by manipu

lation of the interaction strengths ,
that is

,
the eynapses.

This approach was
,
unturn

, inspired by the work of Concierello's

Little introduced
Approximately in the same years (1974)

concepts from stat
. phys. of magnetic systems (such as

temperature) into the study of
recurrent networks.

↑astu & Figatin 178



⑳
NOISELESS CASE

Given a set of memories GEMS= 1
,

--- ,t
when each entry Rod (0)

-

ask whether each of the K is a fixed point and , if so,

under which conditions in terms of the system parameters (N,
K

,
L=)

we also want to estimate the with of the attracturi basins.

stability of zM
~

on Meg(t+ )

= (4) + 3 = sqn)(/) fulfilled[

recast
basedon scaling argument

M an
popular approach

3· Tile I 10 · physics literature : S2N pseudo-heuristic
engenaug

· math 1 : large-deviation therry

↳
its validity needs to be checked for i = 1, ---

,
N and for the patterns

M=I target patternwly

=
ji

=
NMT slow-noise

M= 2

NX2 noise in addition to fast-noise
that

signal acts directly on the necronal

z dynamicsCompete
elandscape

~ L

NCS/ N(/
-En

making
it more rugged

and slowing down the dynamics,

as we will see
.

&

we anticipate that I play a need roll in thesuleplay

-
_ gn(+- estimate attractori basin o = 3

-The de stability of different configurationszg . specious
R quite



Review by Ricco '96

Perfect retrieval ,
i
.

e. E= Sh is a fixed point ,
(50-stable

McEliece'87 (LDT) k = 0
Cou ( as N4X

mismatched entries vi the initial dotur& normalized H-distance
is strictly smaller An N/2

where the constant varies according to some details leg existence of
come expectional memories, synch . VS asynch · dynamics , convergence

in prob ↳ us almost une 4 convergence)

In particular, when K Is finite while N&X
,
retrieval is perfectly

ensured for each pattern-



Relax perfect retrieval ,

i
.
e

. (O ,
E)-stable

Newman "88 k = O(N)aN&X

Loukianova 194 Inumerical estimate for E= 0
.013)

Again we can be more explicit in the relation and to this purpose it

is useful to introduce the following

Def load of the nete . i Du relio between the amount of
shod info and of resources

6 :

=le Low
lo

a

Xc 0 . 056

xc = 0
.071 X 0

. 138 AGS'85



Black-out scenario too large load

When his relatively
large,

/errors
M

slow noise can prevail over

50 -

T
the signd and we abruptly

i loose an capacity of retrieving.

2
.
5 -- -- --

--
>

0
.
138 2

We can look at Hebb's rule as an iferative rule St. at

each step a
new minimums in the

energy landscape is generated.

⑳ AsK grows
attraction basins

start to

⑳ ocrlop ,

saddle point
an
loca minine

⑳ ⑳ emerge
andthe enagy landscape

gets more
and more rugged.

Ask exceeds a certain
threshold , config

.

E = &M are
no longa

minima

Now minima correspond to config .
That are

not use ful for our

purposes (m
=0



To summarize :

When a gets too longs , patterns
&M are densely packed in the
-

embedding space 2-1 ,
+ 1g0 and,

as a result, they
case

and eventually
to be minima

at all
.

Lo be global minima

-> revisions ni the Hebbian here been introduced to

mitigate
this effect.

Examples inspired by the numerical work by Hopfield '83

Hebb : it active string rul

Jej -> Fij + zMM Mach Step

Sample & *
-> corse storing mechaninu

Tij -> Tij -

accessibility
M retrieval

Inte -
*

-previous
3

unstoring

steps



wullarm.

rate

Plakhov 194 (n) (n+ 2) (h) (n(

Jij -> Jij = J - fi (E*(7; 18* E
Dotsenko etal 192 N

Jij(t)= (2+t)3%

= C
=z

ast-X

minima our shollow - saturate to C= 1 but fragile

(h) (n+2) (n)

Fachechi et al '19 Jij -> Jij = Tij += [y() - Gm/j2y
1 +En

I=

Rationale : mimicking mechanisms occurring in mammal's

braui dunig deep.

to Hebb'scul

j=
(3 - 3)

kohonen's projection
↓ ↳

remotion t + x

consolidation (Kantar & Sompolinsty' 86)

E unlearning strength (to beat sall
enough to secure

convergence of algorithm (



NOISY DYNAMICS

(t+ 1)

Si - sgn [f + Tzi
*

] i = e, ...,
N finite

TE IR
+

zind PE B : = 1/T

gz(z)= [estawh(E)]
(t+ 2)

Prob [0 : ] =y3) = 1 [2 +
*tarhic)

stochastic contribution -> probabilistic approach

pot(e) = Z WTE] P
*

CE

&Es
2x2N

x = 5 - 2
,

+ 25N W[818] E To ,
1]

12 1 = 2 Stochastic matric

Rows new

Z WTElE] = 1 to 1

& Ec

Transfer probability
matix -I

As w is homogeneous , given P
(o)
(E),

p() = wp(d) + pk) = w-pH + - ..
-> pm= wwp(

%)



Markov process

·
irreducible (all states

communicate

· a periodic (sequential dynamics S ergodic
with random selection (

~This proces is
also homogeneous /Windependent ofus)

homogeneity not required for engodicity.

~ Ergodicity would also require positive recuence

Ergodicity path of finite length m S .

t.

WIElt] "To 8, Ev

any state cour be reached from any
otherstate in a finite

number oftps ,

whatever the initial state
.

N state MC

engodicity =D 7) stationary [i .
e

. p < El=WTJP]
distribution pa
Sit

. for all 5, th hi pl (810 ) = po(z)

t+ X

in particular , pla) is independentof starting point.

WP
2)

= p(x) (right) eigenstate left invanant



2 linear equations , coupled

pl(E) , It
e

short-cut : resesible/equilibrium

WTOIO'] D'IE) = WIGlE] p
*
(E) FOREN

-

-

detailed balance ab

-

↑ (2) - p (E) = 2 [WTE] PE) -WIriO] PcEly(t +2)
--

&~m
-

out
list

-

.
8

statuariety

- WEIET = EItabBT]

- [2-tanh (pY(')] Gre
,03

Fit : = (E2, ...,

-Ti, ...,
En

+ uniform
distribution for selecting

the meron to he

updated



+ I

-> ProblOi] = E [exoitawh (BTil]

Pop For sequential dynamics ,
no self-interactions L

: It
10 db

If elb ,

then plx(E) & exp[-Cr10 ; 7)B]

with Hw(0 ; 7) = -1-Lo

= L(0 : ])

Recovered equilibruin stat-mechanics pomerate
-> large tools available



Remarks

· Consistency with Lyapunov
: small energy config. are

more likely
- breakdown

· Noiseless case
-> fixed point/ergodicily

· Noisy case -> engodicity

How
can I ensure that a target configuration is reached and

retained even in aroisy system ?

Asymptotically N-X

By adding
nodes

& the topology
can

be such

that there are
modules

connected which
densely

other
hand are

on
the

connected
each

M
loosly
other .

As a result,
as
N+ X

↓ the prob. of
moving From

to the

one
module

bottle-necks vanishing
other gets



W transitori matrix ③

Spectral expansion
-

> asymptotic degeneration of
Person-Frobenius eiganale

- look independence on starting configuration

Otherwise stated
,

as N- X
positive recurrence

no longer holds

I want that the target configuration can be reached and

retained. By engodicity breaking I can
ensure that a

target config. is ,
in fact, (8, 2)-stable that is

,

it

remains confined in an accessible set of configurations

within a reduis E . This ball is somrounded by energy

barriors that cannot be overcome
.

Then, if I want to

retrieve a different pattorn,
I have to reinitialite the

Myste.
S

Remark

Pro ; j)
= exp[-BH(

-

Can also be recovered following an information-diver approach
MEA /Jaynes' 57)



TE HOPFIELD MODEL

Def =E 3 - 1
,

+ 13N

He(i) =
- 20: 0;-
Ni<j

synthetic ,
structure

~ Rod(0) , -1,
+ 13 + les dataxt

-

build up a theory
when statistical proporte
an controllable

PrB5) =
1

exp( -BH, (E; ))
ZN

, B,h()

To lighten the
notation : drop the subscript ,

but retain s

which is dropped
only when refering to the TDL

Def Expectations

Wr (f) = [P(3)
·f thermal average

ET-T = El
: (

average of disorder

< - > = Wr (-)

D Mattis magnetization ,
or pattern ovelop

Mp=-1+ ] =.



m = (m1 , mc
,

-- , mrt order parameter

An order parameter is a measurable physical quantity that

allows us to differentiate between different phases of
a system.

Here m = 1 pere retrieval
state

-

M = 0 disordered state

Hnliel =-
2N

-

- EhpO, diagonal correction

My r

=

-(Nmp) (Nmp) +-N
M

=-N

--

· Hamiltonian scales linearly with the size ,
as
it should

· diagonal corrections negligible in
the thermodynamic

limit and as Cong as to ,

while if I
remains

finite they provide a
constant contribution



a = - loar-lad

& high-load
Pef Load := liaso

al <>
us B ,

c
,
2

-

-> phase diagram ->
a penici alling

Distingerich phases when the system behoves qualitatively
different
Specifically,

I aminterested in a phase where the machi

can be exploit for retrieval purposes
.

& Explicit expression (in the control parameters)

of the fee-eagy density

En() :

=_ log()
interested in the typical

fr : =- Elog( behaviou ,
not theone for
realization

aspecific

fi = lus In

Why f is a key quantity ?

- probabilistic point of view ! logEv plays as a

cumulant generating function ,
den vatives of which

-

yield mean
,

variance, etc of the observable conjugated



eg.Fu
= -m, HW X=(m3-(7)

f = -uVamX =

When the system does not encompass any external field we

can always introduce an auxiliary one to be set to zero

<mm) - hilate I

pr

- physical viewpoint

the free-energy is a thermodynamical potential

This can be determined for a given configuration of

J

the myster or , by applying
a coarse-graining , for

a given value of the
U . magnetizations

As the system spontaneously
evolves thi free

deceas as a result of the first and
the

--

energy

second principles of TD . Therefore ,
the expectation

ofm can
be detained by applying

an
extremization

procedure
over fo

< Mc =

again f (m)

M



Techniques (not exhaustive list)

- Saddlepoint/Le place
method

- Large duration principle Gayrand
190s

Barries

Ricco

Talagrand

Shcherbina
- Random matrix Krong 190s

Paster

-Martingale Tirozzi



INTERPOLATION TECHNIQUE Guerra
102 Fields Inst

.

Comm

HU(E ; ]) -> En (E ; J ,
]'it) =

= +HN(E ; j) + 12-t)7 %
2058(8 ; 5)

t [0,
2] st .

+= 1
-> original

model

+ = 0 -> "easy" model

& next
I
O i..

h

E = E
,

F
, ...

FN = F(t = 2) = F(t = 0) +j+

+

S
= F(t =0) + $

,

1w(m) , ... ) + g[wim -m) -]
at'

- -

Facial remainder

N- X

RS -O



Fin(E ;3) = +1 - N Emp) + (2-t)fEmp My
--

um

Hw( ;3) ZizMp
or 2

super positori of
↳ fields,

each

H = (Ms
, ...,

Mr) to be set a posteriore
pointingi

Be

direction of the

related partou
Ups minics mp and turned

IzMp minics the field acting on Oi by M

M

Ti(E) =Tijt; =M

#(t = 0) = / logE(t =0

+zo
= 1 log
N

= log
N B ( M) ai

= log
N

I ↓ logtech (
N



=

- [log2" +zlog [B(3-1)] =

-logz]Is

-

-> log2 + I log[B(Eul] law of large
N- X

numbers
# -> O

N

E = +log
-B;, I

=
-

- B(I;, 4)

=
- B

= PET(u)]
= b(-]



= [() - 21 - (2) + M2 - u]

=

& [(-) - u2]
↓

+ X - 2mN)

2(42) + m - 2(mIM

-> d =- T

A = (t = 1) = (t=d +f

= logz + ElogcahPEM) - But

Dealing with integral -> see Agliari ,
Fachechi

,
Navllo'20

Low load :

rigorous treatment
is feasible

Exploit self-average of
u -> see [B)

written simply lim P()
= Elmin) ,

with Enu

almost surely



Extermize w .
r .
t

. Mp

dA
=0 -

#M tank [B(E. 1)] = Mp
-

dMpr

Mp = w(mp) must fulfil this equation

Consistency
check

H +Zi Cpmp -> A = log2 + #logch [BEN + B(5k1]- Bu

M

hi = Each . 3
= wimp)

Another haristic argument [CKS]

Prob [0i + - 0i) = <[2-Eitanh BliCE]

Ask for
stationariety

1 = Or tanh (BT(I)

5 =
tanh [B & Jijt ;]

ti = Zitanh [M]
↓[i

- ↳tanh m
=tanh [P)

Ne
-

-> ETS tamb (B)]
m1

= # [tauh (BE-M)]



m = Estanh [BE:] self-consistency ey

Let's now mispect their solutionis . For this purpose, we

recoll that
,

from SZN, we know that, at T=0,

a configuration I That is a symmetric ,
old mixture

----, (weg we can consider theof the patterns 32

firsta patterns) , namely &

g(m) = sqn( + -
- +E

is stable
.
The related magnetization is

mpit) = = Zigz for p
= e

, ..,
k

In the limit of large v they are in the four
(n)

↓ IE( wic....,
1,8) where w

- -
n

k- n measures the extent

For instance : of the overlap

n= 2
22)

(2,
0 ....,

0) M
(2)

= 1
us

n
= 3m()(1 ,

2
,

1
,

0
,

---

,
0) m(3) = 1/y

law of
E0> 3

large
- numbers

mp= Nto 1 M33

sign (+ + 3) 35 = (2 · ( - (a) -
2 . 4x]

At T3O
-> m = m(2,

- -,
2

,

0
,

---

-0)

n= 1

Let's plug
this expression

wito So



· M
= 2 mi-tack (m) = tauh (Bmp

sc ofa
model

m = ranh (Bm)
(1)

wor --- Tc-T
T· 2
17

T T

-
1-

· mcz
0 = &
*
tach 1852ms) = Et/Et]=

-

To m =1 unique solution
TC

F Tc = 1 St 9 +2 +
c
M +& many

admissible

solution

This is true in general
and com be proved by showing that iBut



m = Emp
- M = Emtan TBEM

= E(5m) tauh[B(B1) = EIE-m/tauh [BIEMI)

- BE(lEM) = BE gum
Fauh (x) [x

-

BENhmr
ETEEV] - BI upmo as

- Buz

m(T =2) = 0

= M21Bm3 As B2 the only
solution is =I

We can expand around =- for B - 1 = 2s

-> Mod Wiz (consistent with the critical behavi of

the zw model as articipated

me As nt the aelop progressively decreases



Now
,
te solutions of the steps .

an only candidate eg.

states
, since we also need to ask for stability

f(m) = 2m2 - TElogash (BEM)

f =
0 +
u (gradient (
-

dur

Har (m) = m Im
=m

m
+ stable iff H(m*) positive definite

(i . e· positive eigenvales)

up to three
distinct eigenvales

n= 1 always
stable for T1

n = 2 stable for T>I but there ( saddle point)
1

only M= is solution

(h)

N add stable for
T<Tc

(3)

To = 0
.
461

↓ N

Lim
Beneficial

role of the

-

temperone

+
(
= 0

.

385

+)
= 0 .

345

f(m) < f(m) keven



HIGH-LOAD HOPFIELD MODEL ⑪
CEIRF

S2N : even at

10 -> 130 richer phenomenology , eg. from

To the load
can be too large

to allow
retrieval

2 =0 simple
change of paradigma

↑ > 0 complex

: simper spteus - energy
landscape is relatively

Oversimplifying
Smooth Ce -g .

(w)

complexsuple
-> it hosts

aminine
that

grows "fort" with N (e. g . Sk)

Intuition: J No, N2)

Csk)

(3-55)i



INTERMEZZO ! SK MODEL

Instructe to first face this
mode which constitutes a paradigue

tis case of complex systems -# minima grows
with syste rize)

Diagonal towns

HY1:= Jijit ; Jij Do Erni
w(O,N)

·

· sget
normalization

preliminary : Wick-Issalis theoret

Let r ~W(o , 02) and let 22 zg : IR + IR

and letlim g(x) Prlz-

then [g() -x] = EtaJltgirl]

sk-Bark
SHEE ;K =

EnteHesh =

- BHBM

=

-_ Jij Zio;
e

2
i

, j

-
-
B

=-- ETTi] E dai
Enige

=

25N j
2 -Blinste

1 E
~

L -



- Bins
- Blind -37

--,
Z

-BHub Zolas-PH-B
-- 2 ]
↳ z2

Ngab NPab

--
-
BTLSKI,

(

(v)

---i Y

Def : ovelop

Me
:= e[- 2

,

+ 2]I J J

f

z

f() -(e)physical meaning
: proximity

measure

8
:

p between
to configurations, - 1

sampled from
the same preob.

distrib

=
- BNT2-]



& Quenched us Annealed averages

Two different averages
over J

f =

-Elog ZT

f
,
n

=

- Log

⑰ - I
,

I live on
the same

tursde

Even
E ->E faster degree of freedom

First, relaxation of the o's occus

while the J's are frozen squenched)

Q ; synapses are slow degrees of peedom not neurons

~m S
- days

A

Frph--logt-logah



Quenched fre energy for St by interpolation

Hereafter shop the superscriptG

H10 ; 1) =

- bejo, hij - We, as

E(( ; 1 , y) = - Et To -
Fz

· eyet
convenient (wick - Issalis)

· 7. Wo . 1) i = <, ...,
N <

must be related

with 9

An = Elog En #- urt Jaudy

An = ElogEu = An() = Arcange
N

#w(0) = -Elog exp()

= Elog [exp



=+ E =log [ 2 arh (By, ] =

N

= logz + Elogach (Bcy)

=ElgijI

=

-TE (Tij)-
② ②

⑧ EW (E Jij 00) :

2TLijET
Y

2
WF

- BE - B

200,
ez

ET80; r &
Z 22



->r=N
- N

-Cp(2
- (a)]

-a)
- cala

= [2--2c + 29-

> (9a0 - [(
"

) =
↑ constant

& gar - 259a + ) =

=

<ar* = 251990)
+ g2

by choosing C = G

=> - (a-q)) + 1 - 2 + 5)

= - (19-5(2) + (2 - (2)



-> A = logz + Elogch TBTT y] +

-21--J-

T bi Pw(q) = G(q-)
v +x

to what
done for

analogously
HM-LL regnie

wa neglect
Cup <+

indea of t
unreg

as
Nex

# = logz
+ Elogash [STg] + (2)

=o -) + Each TBA
-

=
e - StanbT

by part
= 2-[ta]

- Je T2-taukp]]d



- 2
= gitawhtpt)n an

M

9

L
-

>

I T

Expand around go

9 J (B) = BR-

HW : Jijz 11-tip) [1 + Zi] zij
W

, 2)

preparatory for He



HIGH-LOAD HOPFIELD MODEL

hemmas on universality of quenched noise

· Carmona & He 'OS : Any symmetric probability distribution

P(J) with finite moments com be chosen for Jij without modifying

the fee energy of the syste apart from
corrections vanishing in thL

leg . Rademacher)

· genovese
'22 : same result but for bipartite SGS

· Agliani
ot al 117 : When interested in the retrieval of one pattern,

say Eh ,
we can explace the remaining K-1 by Gaussian

rectors,

without modifying the free energy of the system in the TDL.

3 EG-152gN EMC N(0 , In)
- -

M
= 2 marked

MT 1 unmarked
-

contribute to dow noise

condensed uncondensed

difficult
FM-like

Er
, (3) = [exp

exp9-- > diagona neglected and
reamed ie

#E expLemig-f dizMxEIE..

* 1 . Elogt =E
ope(tm) = exp N

=-2



Remark
o

· I can always
treat the contribution - Z

p
= 1 as a FM one , by applying a -

O O

O O

Matis transformation (I
car apply X

o
Oit only once for x

= 1)
Y
FO

·The first contribution
shall be trated

analogously to the low-load case

o· Linearization -> Bipartite hybrid spir-glass

Therm acting on each neuron

involve OCN) neurons
,

therefore,
&

I expect that
TLC Kicks in and the Fi

O
- &

- O

field distribution stabilizes over a

- 8

O

Gaussian
. Of course MF is mandatory for nur

the application of the interpolation.

o ,x ,
x4 or (py , Ey

2

)
z = X - Y ; g = coeff , corr ,

LTz] = MxMy + gOxOy
2#(o ; 3, 4 ,

8) = VanTz] =

Mx op + my28x
+ 8x8y2(1 + 97

=- tm-(2-t)B4Nme
-

FM-like

+
BA



1 , 5pvNCO , 2) to mimic the statistic of the internal fields

↑, A ,
B

,
C EM to be determined a posteriori

By looking at it we can anticipate the order parameters

↑ -> me

A
,
B.C - overlap

· M1

·aplica overlap Mo:= -2

It plays as a proximity measure

·aplica overlop for Gaussian neurons Pal :=E



SB log2 + ElogchTB] -logBl

--+

whereio
, 5 and I must be extremal ,

namely, they must fulpi

- in = ET tank (Be+)

= [tauh /Bi
+PM)]& &

F =-ED

Remarke

· As expected,
we recover the sc. egs . originally found by AGS mi 185

by replica trick

There is some analogies with
low

load solution

·

=
ETEtanh(3m)] q= Sep(z)

tanh (B9z)

·T plays as a noise as
it is multiplied by a r .

v. y.

In fact, this is turned by > which is the control parameter

for the slow
noise

· I corresponds to an algebraic expression,
that is ,

we can

substitute it
with an expression

in terms of b and I
.

Namely,

we do not here a SC eq for I consistently
with the fact

that

I stars from auxiliary vanables Cit is not an intrinsic order param)



Resume Hopfield's mode
and emphasize that the S

transformation basically highlights a thermodynamic

equivalence
Imeaning

that there partition functions as equin

the HN and a bipatts hybrid So

between

O

- O this structure is reminiscent
O

- O

-
8

-
O of RBMs

where binary

O
O

(gaussian)
is interpreted

as

O

EEI, +St EvNo, FuB visible (hidden) neurons

↓ ↓

V b

& -VIEWB

(3)= S B
oh

=-2,
+ 230E

-

ES-1,

(RBM)
HW ! prove it withe presence of external field

= Zip (3)
P-BEN BITE

SZe Fe
e

C
ah

BETE e) + ur) =

- ItT e e

u&w

=e EpZ: Irvi



the equivalence can be generalized to the case

binary/binary 3 Bana,
Sollich etal 118

gaussian/ gaussian

(in genera the
retrieval region

shrinks as you
more away from

the binary/gaussian care) - holds for all degrees of

freedom (z,
0
, 3)

-> In the following I well use the most convenient pomerate

according to the case.

I stress that the equivalence, at
this stage ,

is a formal ou

I mean ,
it does not encompass any of the learning feature

characterizingthe RBM ,

it only considers a trained RBM

where
,

as an effect of training, weights have been

queched asand
,

wi this setting ,
the RBM

exhibits retrieval capabilities in the
retrieval region

outlined when rivestigating
the HN.

Istatic picture
over the weights)

In the next ,
I will trey to show that this equivalence

is not

only formal .

To this goal
I will first

review the RBM



RESTRICTED BOLTZMANN MACHINES

RBMs are shallow, two-layer ,

nets

v h

The architecture of an RBM is shown here

&

and it is made up of a set of visible O &

units Vi ,
i= 2

, --.,
N (so called O

&

O

↳

because they usually collect observed

data and a set of hidden units hip, pr
1
,

---,

connected by weight Wip. .

External field/ bias Ev, pr

Thesate of the units in an
RBM are determined via the

BG distribution ↑ I , E ; W , ) =expEBHEl
where

,
in the simplest case

HW) =
- Zoiti-Zophp - ZWip Vilpe

M uj

WEIRNYK
,

&E1RV
+

are treated as parameters



Name BM - prob .
distr.

Adjective R -> hopology
they constitute a paradigmatic model for M

They can be trained in sup be unsup way , depending
on the

-

tast (e.g - dimensionality reduction , classification , generation,

regression) - Training here means properly setting Wand D S
.

t.

themodel distribution des reproduce untenan pro distrib

over datasets provided as in input,

Hystoical note : introduced in 186 by

Smolensky under the name harmonium
,
but the

den

stat . mech . approach finally prevailed t information-

theory driven one.



Interest ni RBMS

RBMs ,
much as like The HN

,
is a simple

model as for the kind

of affordable tasks
,
but they play as an

harmonic
oscillator

-gation of ML.
to start

the invest

nezand 117

Tubiana,
Coaco,

Monasson 19

Decelle 17 ,
"18

,
'20s - - -

Rondi '20s--

--

· Role as building
blocks of a class of deep NNs

· Paradigmatic models for learning that allow us to

inspect foundational issues
,

such as the role of the nature

of units (eg . binary,
continuous) and of the

related active

Rondri etal.
trori functions leg sele, linear... ) + see

121 125

· RBMs have been shown to be universal approximators of

discute prob .
distrib

, given a sufficient
# of hidden

modes

this result ducto Le Roux and Bengio
'O8 was

builton

Cybenko's thoum 189 and later generalizations.



unknown
-

At the end of the day (ultimately) the task
is to learn an

joint probability distribution q(x,y) where x plays as

an input I query) and y plays as the output ,
or

,

i the case

of unsupervised
take we lea a probability qu ,

shik of

generative tasks.

We want the model
distribution p(V) to

minic this

distribution -

In the following ,
to simplify the treatment, Iwill

assume that

E, I ar both binary

· supervised
(x , y)

i = 1
, ...,

M training
dataxt

eg .

UNIST classification
x [0 ,128x[0 ,

2728 square picture ,wize
28 pixel

each pixel gray
scale

y = 40 ....,93

(2 ,1)ind 9(2
,2)

recast the urbedding space
to 4-1,302-2+15

*

to
compare 9 ( ,2) with PlEE ; W

, b)



pictures are flattened and
binarized (the childed

andmapped to=2)

N

xudv + 2 - 2
,

+ 23 N = 784
1

y uk( - 1
,

+ 15k k = 10

GMF-Tone-hot vector
motation S

· unsupervised , of
Must generative

DI

I used latent vanables

Having recast q(x,y)
into q (F ,

2) we can
introduce a suitable

Performance
measures : KL distance/ cross

entresf

D(g(P) = glog

Ho unsuperised tasks we should first marginalize PE
, ) set

to get pCE) ,
whence

D(P11P)
= Equ log



- BECE .
a)

Let's recall p(r ,
2) =

2
Elb) = - [viWiphp-Etivi-EOphr

i Me
N

Pl , ZiW ,
b) parametrized by

Wand I that
need to be

estimated S.t.

D(9/1P) is minimized .

Gradient descent

#]uj =-
j

Xti = -E

where E is the learning rate
or steps .

By applying
this updating

rules D

wewill derive explicitly these updating
rules

,
which will

clearly involve
a tracing

datast

&= 2, ..., n
or I re Yes,

...,
M

according to the case

Before moving
t calculations, let me conclude to

review

by recalling
that , by implementing

these learning
rules

we will
reach estimates ,



Superised case

~ St . p,)g(

etest + E - FE') e .
r.

11

ProblElI= ]
= plElEiW ,

E

Unsuper
:

, t
.

plaw) = gi

Prob[v] = [
PLE

Grand-mother all

the one-hot recte
motation iniplies

that the
hidden layer

to the # of shared

is made on a # of nuerous corresponding

memories. Also,
it implies

that we have a specific
hidden

muon for each of the stored
memories .

this setting basically

all Mory -
(50s)

reproduces the
so-called grand-mother

Accordingso this theory,
we have an hypothetical mon

that represents a complex ,
but specific , complex or object.

it activates when a person sees
,

hears
,

be
otherwise

sensibly

discriminates a specific sulity ,
such as their gardmother



learning
rules for sup

- BE(v ,
h ; W

,o

= Zplv,
h ;w . a)

p (0,
2 i w

, o) = e -

--

w En
.
a)

EB(w,)

3 B

In the following I will adopt a lighter motation omitting

dependences if not ambiguous.

& DIAIP) = E glogpI
logz

--

-- Eq( Tlogzi-logz
-Bel-R

- -91[-

-
nuu

w

Eg[]
1 Ep[]

where I = Win -vil

3 = Om -



D Wim =

+B [Egtwih] - Et VG
40m = TEgth] - EPA
46i = [EqtV]-EV]

learning means
thatq2 - ] = Ep[-]

interpretable
and reasonable condition

I the model can captne ist and2nd order correlations

Latleast within a certain threshold level)

not necessarily

E(1) = - Jijsisj - I Gijksisist restricted
jajat

#Jij --

->
higher-order

correlations among

CHEA)
①Jijk

- neurons

- higher accerecy
and control

average over

Practical implementation
: Eq empirical

dataset
training

Ep -> MCMC



Learning rules for unsupervised

p(E ; w
, ) = Zin,~

--Belwal

·w , a)

DP)
=

-E EqITlgE-lgt

=
Y pe

= gi ph-ET=[ -

-

=En[]-E

Again the rule can be generalized
to more complex energy

models
.

Again the
rele wipes a MCMC and

an empirical evolution .

Again the rule
is perfectly interpretable .

The first and the
second moments (or even higher) exhibitthe

same values irrespective of whether the visible larger was

left free or was quenched as sampled from the target distrib .

that is
,
in this sense, there is no difference between visible config .

sampledfrom p and from g -> consistency with generative lasks



Remarks

We might
have obtained analogous learning

rules by

maximizing
the log-likelihood 2( yiz

unsup
datact .

the parameter) with respect to the given

p(IDiSE ; x) =

+ P(Di ; 3) = exp[zlogp(Dij])]

2 (319Di3) =zlogp (Di;6)agmax LCD S
z

In fact, it
is easy

to prove that maximizing
the average

log-likelihood of the model's parameters with respects to the

data is asymptoticallyequivalent fun the# of data points)

to minimizing the KL divergence between the
model and

data distributions -> HW : chickit

Edata Ep

ID Lwip = Y Kvihpdata- <Vihrmodel (
u w

positive negative ->
intractable

phase phase

This challenge has
led to extensive research

on approx
methods

for computing the average in
the negative phase . Therapox

can benumerical methods shot accelerate sampling , analytical

techniques for estimating expectations ,
or hybrid approaches

that combine both . Generally ,
numerical approx rely on

a
distribution ,

while analytical
various forms of sampling from

methods are based on MF approx.



CONTRASTIVE DIVERGENCE

In practice, generating imbiased samples is extremely

Twen consuming because, after
each weight update,

th RBM must reach equilibruim before reliable samples

can be drawn . Mixing fine
is often prohibitively long .

- alternative samplingSechniques , eg . mslep CD

Instead of minimizing the KL divergence between

Polata
and Prodel ,

as i standard ML estimation
,
CDn

minimizes the so
called contrastive divergence, defined as the

difference
between two t divergences

:

Dry (Polata (IP) -Da (PullP)

where In represents the
distribution of a Marker

chain

initialized from the
data distribution

and run for i

alternating Gibbs sampling steps.

when ne0
, Ph

+ p and DKL /PuIIP) to
and we recover

the standard ML objective - Taking
the gradient of

the

ument objective function :

#o
En

Wip & ( < vihp) data- (Wilm)p) as
the expectation

of the
exact model distrib .

Cancel out.

The CDalgorither
is relatively simple

and computationally
efficient.



However, the
thoritical properties remain not fully

understood .

- the quality of the gredient estimate is highly dependent

on the
dataset and on the number of steps m

-
the gredient can

be weakly on strongly bissed
, potential

by leading to suboptimal learning
outcomes

Decelle
et al 122

To mitigate these issues several variants ,
e .g . PCD

Tieleman 108

In gened ,

the fixed point of CD differ from
those of

ML andChus
CD is a based algorithm .

However,
the bias is ge

near an ML optimum
nerally small , since CD convages typically very

this small kids can be eliminated by reeming
UL for a few

iterations after CD,i .e. using CD ason initialisation strategy for
ML-



while training algorithms are crucial for successful FBRlearning

their mathematical description is hand . Statistical physics
has

ni RBM
been used to understand the training dynamics

(Docella et al 117
, 118) and to develop strategies to improve

sampling and training efficiency.

However, useful information can be extracted from theoretical

approaches thatidentify regions is panemeter space
where

learning
isfacilitated, as well as limitations to the model's

expressive power and trainability

M

-



SUPERVISED AND UNSUP .
HEBB

Now we resume the HNESRBM duality and notice that it does

not uncompass any learning protocol as it is based on the perfectG
knowledge of

the reality that we want to capture

My goal now is to relax this tip and make the equivalence sure light

23M3 ME,
-> -> EMS M = L...,

# prone
to ever

-

A = 1,
--/

M

- Is

archelype "examples"

wher EMA=
pr, A

XMA ~ Rod(2) ,
reto,

1]

vid

P(XMit = 12) = E (Hadamard product)

Fontanari '90
M quantity, r quality

Two protocols
superised

Impervised

·Supervised : M
is disclosed by a teacher

- group
examples belonging

to the same class Mr.

m ,
b

Jap = zzz = E
vj Ma-

M

w of
tan kM

estimator I treat each examples
for z as a single pattern

⑨
pixel-to-pixel↑

· unsuperised : p is veiled
correlation averaged

unsup

Jij =Ma
over examples



First focus on supervised case where the anology

RBM-AN is stricter (know how many hidden nums)

Agliari ,
Bano

,
Kauten 122

Allmanno Aquano

Control parameters : M ,
r

, B,
un

S : =
e -r
-

M22

#(3/43f(5)
monotonically mining

Problsqn1[X =
- 2) = [2-es]MX)1

S - 0 recover standard Hopfield

whe reachexampleisa perfectcopy
ofcheactaremembers

E

order parameters
: m=

=
(1) (2)

912 = 25

H 15 ; 3) & n2
-



Tr sa retrieval region
shruits

.
· (RS)

in
>

0040 .07 X

Se

& T=O

17

0 . 24 Lo

Get back to RBM

& (,) = E empirical jointdistribution

teronecke deltas

Gre -> nonzers if B = & i = 2, .

Em = 10 ,
0

,
--

,20,
-

M

tel

Gradient descent
over

wix = 3 if examples in different canes
are t

cat last
in the average)



but we could anticipate this

B
up]
↳

= Jap(z) e dZ
-

S
d Frequency

+

xx

- +
X

Y &
X

X

xx
+&

7 =>X
X

X X

*

*,
0 . 14 Ls

K

Chistogram)

<3
*
S -> W

-

MA - IP 2 Ever

Set <2),
M

logiu
-

values of e and i such shot

<M takes a certai
value

M%....
> Tons Setzand I

-> <M2]

log,M



Remarks

· Any useful resect beyond the toy setting of Rad . Batterns?

For structured data W
=- is no longer

a fixed point for GD

but effective pre-training (Smart-Zilman '2)-second
decades

gani

· Pre-proces to make them orthogonal

#D

33M3 - G gas = yk
GS

· K . projection and
the drawing

hibbian rulewere use ful to dead

with concated data
and an effect evidenced

in the #N was that

they lower the likelihood of spurious
states

Is there a related BMG
I wouldcall it DBM.

Hb(EiE ; W
, t) = -

WirViz
O

-
z - Wo, M

= 1
, ..,

k
oO

C
M

Inhibition among
hidden of

4W

3GD modes avoids
simultaneous O states

at activation of hidden
nuous hence spicion

· Task : minimize distance between I
and Efor pr= 1

,
--,

Suitable loss (E-3M) 28-2E . 3M Leucidean
distance (

- ↳ noru

E
= LIFE eFmp + H(0;) =

-NEC
La Me



"MODERN" ARCHITECTURES : HYPERGRAPHS AND MODULAR GRAPHS

populated
↳ Rausauer

et al . referring to generalizedHopfield nets

where neus can be continuous variables
and their activation

functori cour tater a polynomial or
even expe shape .

Highlight application in the context of transformers

-> upsurge ofwildest in Hopfield-like nets.

Here I am actually refering
to N where the embedding

structure also plays a role and we want to leverage
its hopology

↳ make the network
able to afford more complex

tasks.

->
enhanced performance

In contrast with complete grophs
-> different class of

tastes

HYPERGRAPHS

The architecturenicludes hyperedges which connect two or more moder

MEA : higher-order interactions
- higher accerely in capturing

experimental data

-> learn high-order
conelations in the

BM : 11
-

reality that
we want

to coplane

H(03) = -

J

, Jin-up Fri --- Eup =

eie---ip

=-----in ---Lp pl

un im

suitable runs over all

-

normalization p-tuples
Cordered - factor, nauditoes)



this kenot of nets : extensively investigated since the so's

- ropid overview , useful to recoll different names by which they

appearedui
the literature

· Pertho & Niez'86 /multi-connected : starting from biology,

they included all higher-order interactions

->k#synopsis (

·
Baldi & Venkatesh

'87 (higher-order) Rec ~ NP-1

· Gardner's7 Ka ~N
*Yogu perfect storage

· Abbott & Arian 187< generalized networks)

MH=

· Bower & Niederhause 101 (p-opi interactions)
Knotor & HopfieldG

Deveigil
etal117

· Agliar et
al '20s

Ramsauer
Stal 120

super-linear performance
la NP (p = 2 recove Htr)

with #synapses
Expected : # should patterns grows

Scaling
: #2 bedpatterns & synepses =

Intuition: as the size of the tensor I grows we have access h

-

a laugh
number of weights whe

we can speed
the rifismation

on patterns
-

proved at a rigorous level ,
her S2N



-(2)= S Focus on target pattern M
=1

and nauron is , ulg

chuck stability =

~... (~ZS=N iz ... ip

=-

~ Fr RW of length K . NP

This
knO(NPT) low-load regime

krOCNP1) high-load regince

Check the robustness of stability
vs corruption with

starting point

now, doing
with a fracteri of flippedspurs

is a bitinvolved

# flips
is even

, field left rivariant(

We apply an
additional noise

GM wzi
wher G-Wo) ,

we

Su 1 Retrieval is possible
as long as

wr1 ,
independently of

K

R ~ + wit
up
to kn O 1 NP-2)



We notice that ,
as long as p is even

,
As transformation

can be applied to thesehigher-order networks

_ zM2 BNz
(3) = 2 gol

also in the RBM

-> higher-order
RBM

AN

eg . p
= M

M Wijpe P
-> +

2

i0 - h
o M v

↑

J0 O

O

&

&

O

M zuN(0, 2)Bis"---- we

I
um

weight of the learning
noise

plaquette
i 2

, ..., <P/
z

/ M

Sul
12- neglecting

sub-leading

R -
WNE-PD + we VEN contributions

Non trive scaling , featuring
an interplay between p ,

w,



kwNa wwNb a,
bEr

i) a = p
- 1

b10

(high-load)

ii) as p
- 1 b=

-a

↑
as1

Clow-load)

b
vii) ab1

H

Interplay between the
load and the affordable noise

If we accept to downsize the load
there we can cope

with

a noise scaling with N and diverging in TDL

Intuitive argument ! if a < p-1 ,
we can enjoy

a redundant

representation of patterns be cause the info
encoded by patterns

is speed over a large number of weights .

to mitigate the effects of
- he can leverage redundancy

slow noise (moving from I N toNPY and of learning noise-



Modular networks

a= 2
a= 2 sercal modules/layer a = 1

,
-L

↳ -3
·

cas
= (51

,
02

, ..., Eva) a = e, .., I
-

-

(a)
eq -1

,

+ egna
O E

I is the
same for any layer

In genera,
Na size layer dependent

3M,
M

=2.
--

,
k
pattern

set layer dependent

Mr 9-2,

+ 2 Gra for a
= 2, ..,

4

K
M

= 1
,

- -

,

j

↳ (8 ; g , 3) =-- un

Hebbian
~

interaction

⑧ Ne normalization factor to keepIt
ein .

ext in size

-

(tp:
O

,
w finite ,

vala

· m= Mattis magnetization

·
H (0ig , 3) = - Vane m gam a

· g
= (p(Y) gab

>o -me max

f
< 0 -> mm min



TASK : MIXTURE DISENT ANGLE MENT Agliani Alessandhelli
centenze

#netof nets can exhibit capacities that Baue
,

Ricci-Tenseughi'2I
Lexceed the

sum

For L= 3 we design of the single net ?

L= 3 m min
Hr (8 ; g , 3) =

- NZ Go

each layer
is

gas" 92 atte
aa - maximally aligned

m we min
with a given pattern

↓
two layers

are

I t for energy sign
arthogonal

su -> SC equations

Usually this is the final point because
then it is just a

matter of solving them numerically

Here we can as well solve the
Sas but this

would not

provide an answer to and question

In fact, we are wondering
whether this particular

state =
(1+2+3)

belongs
to the attraction basin of

a
(2,

2
, 3)

-

Of course,
we can rely on MC simulations ,

but we
also

want an analytical estimate

we envisage
too ways

· solve SC eps fixed point iteration
method

initializing the state
11

and checking



if the detected solution is the disentanged one.

Subtle : not perfectly stable ,
sensitive on initial condition

(where I implement some peterbation

and the path followed to find th
solution may

not necessarily be the one suggest by gibbs dynamics

· study the Hessian sign

condition on J ,
2 , such shot

&
(1 + 2+3) unstable & E

(1,
2,

3)
stable

-

-

ensures the existence of a region ,
in the space of

control parameters
where she machine

can in principle

work - this is an upper
bound for the disentanglement

region .

Subtle : I do not know whether
the vistability of

the forms finally
leads to the target state

· MCMC

Overall the
tree methods are consistent


