
The Elastic Manifold

Gérard BEN AROUS

Hausdorff School of Mathematics, June 2025

July 6, 2025
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1. What are these talks about?

The aim is to report on recent advances on the Elastic Manifold,
obtained with Pax Kivimae (Arxiv 2410.19094 and Arxiv 2410.22601).

We will first see what the Elastic Manifold model is. This story is
about the competition between disorder and elasticity.

This model can indeed be seen as a collection Spin Glass models on
the sites of a lattice, interaction through a ”taming” elastic
interaction.

It was studied abundantly in the Physics literature since its
introduction by Daniel Fisher in the 80’s, and its study by Mézard and
Parisi in the 90’s, until recent works by Fyodorov and Le Doussal,
among many others.
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Parisi in the 90’s, until recent works by Fyodorov and Le Doussal,
among many others.
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2. What are these talks about?

The goal is to report on what we know on the Mathematics side.

The recent joint work with Paul Bourgade (Courant) and Benjamin
McKenna (Harvard), where we computed the (annealed) topological
complexity of the same model (CPAM 2024, PMP 2023).

In the works with Pax Kivimae, we prove a Parisi formula. We give a
new variational characterization for the limiting quenched free energy.

We use this Parisi formula to analyze the behavior of this model at
low temperature and prove Replica Symmetry Breaking.
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1. Disordered Elastic Media, or The Elastic manifold
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1. The Model

”Many seemingly different systems ranging from magnets to
superconductors, with extremely different microscopic physics share the
same essential ingredients, and can be described under the unifying
concept of disordered elastic media. In all these systems an internal elastic
structure, such as an interface between regions of opposite magnetizations
in the magnetic systems, is subjected to the effects of disorder existing in
the material... What properties result from the competition between
elasticity and disorder is an extremely complicated problem which
constitutes the essence of the physics of disordered elastic media.”
T. Giamarchi, Disordered Elastic Media, Encyclopedia of Complexity and
Systems Science, 2009.

Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 5 / 1



1. The Model

”Many seemingly different systems ranging from magnets to
superconductors, with extremely different microscopic physics share the
same essential ingredients, and can be described under the unifying
concept of disordered elastic media. In all these systems an internal elastic
structure, such as an interface between regions of opposite magnetizations
in the magnetic systems, is subjected to the effects of disorder existing in
the material... What properties result from the competition between
elasticity and disorder is an extremely complicated problem which
constitutes the essence of the physics of disordered elastic media.”
T. Giamarchi, Disordered Elastic Media, Encyclopedia of Complexity and
Systems Science, 2009.
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2. The Model

Consider Ω an open subset of Rd

Define the following energy functional on the space of smooth
functions u on Ω with values in RN

H(u) =

∫
Ω
||∇u||2(x)dx +

∫
Ω
V (x , u(x))dx (1)

where V is a smooth potential on ΩxRN

One could ask (very classically) about the minimization problem: find
the u’s minimizing H(u)? (under a reasonable boundary condition)

Or about the free energy and the Gibbs measure defined by this
Hamiltonian H?

The model here includes two integers d (the internal dimension), and
N (the dimension of the field), as well as the open set Ω and the
potential V .
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3. The Model

One typically start with a ”confining” potential like the harmonic
potential, and then add disorder, in the form of a random potential
depending on the position x and on the value of the field u(x)

V (x , u(x)) = ||u(x)||2 + VN(x , u(x)) (2)

Where we assume for simplicity that VN(x , .) is a Gaussian smooth
function defined on RN , say centered and with *isotropic* covariance,
for fixed x ∈ Ω, and also assume fast decorrelation in x .
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4. The Model

So that we get

H(u) = a

∫
Ω
||∇u||2(x)dx + b

∫
Ω
||u(x)||2dx +

∫
Ω
VN(x , u(x))dx (3)

Naturally these three terms play different roles: the first one wants
the function to be flat, the second one wants it to be close to 0, the
third one adds disorder and complexity...

We can of course also add an external field term (say√
Nh

∑
x < u(x), e >)which is trying to ”depin” the elastic manifold

in one specific direction (here the unit vector e).
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5. The Discrete Model

We now discretize this problem in order to study it.

Consider now Ω to be a cube, and discretize it in a discrete box
[1, L]d , and consider the Hamiltonian

H(u) = a
∑

x ,y∈[1,L]d

1x∼y ||u(x)−u(y)||2+b
∑

x∈[1,L]d

||u(x)||2+VN(x , u(x))

(4)
where VN is an isotropic smooth Gaussian centered function on RN

VN is a centered smooth isotropic Gaussian field with covariance

E[VN(x , u)VN(y , v)] = δx ,yNB(
1

N
||u − v ||2) (5)
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6. The Discrete Model

Our Hamiltonian can be re-written as

H(u) =
∑

x ,y∈[1,L]d

(µ0Id − t0∆)x ,y < u(x), u(y) > +
∑

x∈[1,L]d

VN(x , u(x))

(6)

Here µ0 and t0 are two free parameters (mass and elasticity
constants), and ∆ is the periodic lattice Laplacian :

∆x ,y = δx∼y − 2dδx=y (7)
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7. The Discrete Model

Note that the disorder is assumed here to be i.i.d (in x), and isotropic
in u.

Note also that the function B has to be (Schoenberg 1938) of the
form

B(r) = c0 +

∫ ∞
0

e−t
2rdν(t) (8)

where ν is a finite positive measure.

We assume here that B is 4 times differentiable, which ensures that
VN is C 2, and that B(i)(0) 6= 0 for i = 0, 1, 2 to avoid degeneracies.
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Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 11 / 1



7. The Discrete Model

Note that the disorder is assumed here to be i.i.d (in x), and isotropic
in u.

Note also that the function B has to be (Schoenberg 1938) of the
form

B(r) = c0 +

∫ ∞
0

e−t
2rdν(t) (8)

where ν is a finite positive measure.

We assume here that B is 4 times differentiable, which ensures that
VN is C 2, and that B(i)(0) 6= 0 for i = 0, 1, 2 to avoid degeneracies.
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8. The natural questions

The next question is to understand the behavior of the Gibbs measure
defined by this Hamiltonian at positive temperature, and the structure
of the RSB phase (replica symmetry breaking). The first step is
naturally to understand the quenched free energy and prove a Parisi
formula. This is done in three works with Pax Kivimae, which I will
try to summarize today.
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Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 12 / 1



8. The natural questions

A first question would be to understand the ground state of this
Hamiltonian.

Or more ambitiously to understand the topological complexity of this
model.

The computation of the (annealed) topological complexity is
amenable to a Random Matrix Problem through the Kac-Rice
formalism. This has been done in the recent work with P.Bourgade
and B. McKenna (CPAM 2024)

Note that the quenched complexity is not yet understood.
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9. The natural questions

The next question is to understand the behavior of the Gibbs measure
defined by this Hamiltonian at positive temperature, and the structure
of the RSB phase (replica symmetry breaking).

The first step is naturally to understand the quenched free energy and
prove a Parisi formula.

This is done in a series of works with Pax Kivimae, which I will try to
present.
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10. The link with Spin Glasses: L=1

Note first that, when L = 1 (or d = 0), we have only one site and no
interaction. The model is now

H(u) = b||u(x)||2 + VN(x , u(x)) (9)

This is a ”soft spin glass in an harmonic potential”. This type of
model has been studied by Yan Fyodorov extensively since 2004 (in
the mean-field limit N →∞).

It is of the same nature as spherical spin glasses, where instead of the
soft constraint given by the term b||u(x)||2, one has a sharp
constraint ||u(x)|| = Cst.

Our elastic manifold model is thus a system of Ld such disordered
models with an ”elastic” interaction.
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11. The Discrete Model, in special cases, d=1, L→∞

When d = 1, and N is fixed, we have

H(u) = H(u) = a
∑

1≤i≤L
||u(i+1)−u(i)||2+b

∑
i∈[1,L]

||u(i)||2+VN(i , u(i))

(10)

Studying this, when L→∞ is naturally a version of the celebrated
”directed polymer in a random potential.”

The complexity of this model (when d = N = 1 and L→∞) has
been studied in depth in Fyodorov-Le Doussal-Rosso-Texier (2018)
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Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 16 / 1



11. The Discrete Model, in special cases, d=1, L→∞

When d = 1, and N is fixed, we have

H(u) = H(u) = a
∑

1≤i≤L
||u(i+1)−u(i)||2+b

∑
i∈[1,L]

||u(i)||2+VN(i , u(i))

(10)

Studying this, when L→∞ is naturally a version of the celebrated
”directed polymer in a random potential.”

The complexity of this model (when d = N = 1 and L→∞) has
been studied in depth in Fyodorov-Le Doussal-Rosso-Texier (2018)
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12. The Model, as we study it, the Mezard-Parisi limit

More generally this elastic manifold model covers many models of
random interfaces when N = d + 1 and L→∞

We will not look (yet) at either of these cases but rather at another
important limit, the Mezard-Parisi limit, i.e. when d and L are fixed
and N →∞.

This problem was studied massively in Physics, back to Fischer
(1986), Mezard-Parisi (1991 and 1992) and a long literature in
Physics.

More recently by Le Doussal-Mueller-Wiese 2007, and Fyodorov-Le
Doussal (2020) for a result on complexity that motivated this work.

Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 17 / 1



12. The Model, as we study it, the Mezard-Parisi limit

More generally this elastic manifold model covers many models of
random interfaces when N = d + 1 and L→∞
We will not look (yet) at either of these cases but rather at another
important limit, the Mezard-Parisi limit, i.e. when d and L are fixed
and N →∞.

This problem was studied massively in Physics, back to Fischer
(1986), Mezard-Parisi (1991 and 1992) and a long literature in
Physics.

More recently by Le Doussal-Mueller-Wiese 2007, and Fyodorov-Le
Doussal (2020) for a result on complexity that motivated this work.
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2. A summary of our results
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1. The complexity of the Elastic Manifold

1 With Paul Bourgade and Ben McKenna, we computed the annealed
topological complexity of this Hamiltonian (in the limit N →∞, and
d and L are fixed). That is: we computed the logarithmic behavior of
the average number of critical points and of local minima of this
Hamiltonian.

2 This ”annealed” complexity is given by a complicated variational
problem, which we solve.

3 We then show a sharp transition between a region of positive
exponential complexity and a region of vanishing complexity, i.e. a
form of topological trivialization at high enough mass (or low enough
noise).

4 We understand the transition at the critical ”Larkin” mass

5 These results confirm fully the recent work by Fyodorov and Le
Doussal (2020).
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2. The free energy and Replica Symmetry of the Elastic
Manifold

1 The complexity question is a ”zero-temperature”question. One must
then study the quenched free energy and the Gibbs measure at
positive temperature. This is the subject of the recent work with Pax
Kivimae, coming after a huge literature in Physics.

2 We prove a Parisi formula for the quenched free energy, using the well
established tools as developed by Guerra, Talagrand, Panchenko (see
for instance Panchenko’s book), as well the specific tools used for
multi-species Spin Glasses by Panchenko (synchronization). In fact we
do this in a wider class of models (in our first paper)

3 The first variational Mezard-Parisi type formula obtained this way is a
very complicated min-max problem, and again rather difficult to
handle.
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3. The free energy and Replica Symmetry of the Elastic
Manifold

1 But we can simplify this formula again and go from a ”bad”
Mezard-Parisi formula to a good one, and then identify the optimizer
and deduce consequences on the Gibbs measure (in our second paper).

2 In particular we study its consequence on Replica Symmetry Breaking
at low temperature
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4. What we do not do: questions for you?

1 We do not compute the quenched topological complexity. One could
be hopeful that a strategy similar to that used for spherical Spin
Glasses by Eliran Subag could work, but not in the low temperature
phase is FRSB.

2 We do not study the effect of an external field/force to get the very
important question of the pinning/de-pinning transition for this
random manifold (as in Le Doussal et al).

3 We do not study dynamics (yet!). For instance aging at low
temperature?

4 And even less how de-pinning would happen dynamically at high
enough force.

5 And of course we do not study the other (non mean-field) limits.
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Spin Glasses
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1. Mean Field Spin Glasses

Mean Field Spin Glasses give a fascinating class of models of
statistical mechanics of disordered media

The literature in physics goes back to the 70’s, and is rich, deep and
creative (Edwards, Anderson, Sherrington, Kirkpatrick, Thouless,
Palmer, Parisi, Mezard, Bouchaud, Cugliandolo, Kurchan, Franz,
Biroli, Crisanti, Sommers,...).

A good entry point for this physics literature is the old book by
Mezard-Parisi-Virasoro, and the more recent lecture notes by F.
Zamponi (Arxiv1008.4844).

For the mathematical world, cf the beautiful books by Talagrand
(2010) or Panchenko (2013)
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2. The p-spin Hamiltonian

For any integer p ≥ 2, the p-spin Hamiltonian is given by
the random homogeneous polynomial

HN,p(x) =
1

N
p−1

2

N∑
i1...ip=1

Ji1...ipxi1 ...xip (11)

where the couplings J’s are i.i.d N(0,1) and x ∈ ΣN

In the case of Ising Spins, the model is considered on the discrete
hypercube, i.e. ΣN = {−1, 1}N

Another version is the spherical model considered on the sphere
ΣN = SN−1(

√
N) of radius

√
N in RN .
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Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 25 / 1



2. The p-spin Hamiltonian

For any integer p ≥ 2, the p-spin Hamiltonian is given by
the random homogeneous polynomial

HN,p(x) =
1

N
p−1

2

N∑
i1...ip=1

Ji1...ipxi1 ...xip (11)

where the couplings J’s are i.i.d N(0,1) and x ∈ ΣN

In the case of Ising Spins, the model is considered on the discrete
hypercube, i.e. ΣN = {−1, 1}N

Another version is the spherical model considered on the sphere
ΣN = SN−1(

√
N) of radius

√
N in RN .
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3. The general mixed Hamiltonian

The general mean field Spin Glass Hamiltonian is given by

HN(x) =
∞∑
p=2

apHN,p(x) (12)

with the ap decaying fast enough.

Note that this Hamiltonian defines a smooth centered Gaussian
process on ΣN with covariance structure given by

E(HN(x)HN(y)) = N
∞∑
p=2

a2
p(
< x , y >

N
)p = Nξ(RN(x , y)) (13)

Here ξ(u) =
∑∞

p=2 a
2
pu

p specifies the Spin Glass model

And RN(x , y) = <x ,y>
N = 1

N

∑N
i=1 xiyi ∈ [−1, 1] is usually called the

”overlap” of x and y .
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Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 26 / 1



4. The Gibbs measure

The first question is about statics, or equilibrium, i.e. to understand
the behavior of the Gibbs measure on ΣN as N →∞:

GN,β(dx) =
1

ZN(β)
e−βHN(x)µN(dx) (14)

where

µN is the natural uniform measure on ΣN

β = 1
T is the inverse temperature, and

ZN(β) is the partition function, i.e the normalizing constant to make
the Gibbs measure a (random) probability measure on ΣN

ZN(β) =

∫
ΣN

e−βHN(x)µN(dx) (15)
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5. Dynamics

The next question is about natural dynamics, say Glauber for the
Ising spin case, or Langevin for the spherical case.

These dynamics are reversible and converge to the Gibbs measure.
But are they mixing fast or slowly? Do they show aging?

What is the role of temperature?

What is the role of initialization?

Can one understand the spectral gap when N →∞, and asymptotics
of the mixing time?

Can one understand the thermalization time?
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Statics: the Parisi approach
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6. The free energy and Parisi’s formula

This equilibrium question in fact begins with the understanding of the
behavior of the partition function ZN , or rather its logarithm, i.e. the
free energy.

FN(β) =
1

N
logZN(β) (16)

The main result (valid both for the Ising spins or spherical spins
cases) is that the limiting free energy exists almost surely and is given
by the famous Parisi variational formula

F (β) = lim
N→∞

FN(β) = inf
µ
Parβ,ξ(µ) (17)

Note that the formula is not standard. This should be a sup not an
inf !
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7. Parisi’s functional

Here the Parisi functional Parβ,ξ is explicit and strictly convex on the
space of probability measures on [0, 1].

The Parisi functional depends naturally on the model itself (i.e. the
function ξ), and on the inverse temperature β.

It also depends on the fact that the model is spherical or Ising. We
will mostly restrict here to the spherical case, where

Parβ,ξµ) =
1

2
(β2

∫ 1

0
fµ(q)ξ′(q)dq +

∫ q̂

0

dq

f̂µ(q)
+ log(1− q̂)) (18)

Where fµ is the distribution function of the probability measure µ on
[0, 1], and

f̂µ(q) =

∫ 1

q
fµ(s)ds (19)

And q̂ is any point on the right of the support, i.e. such that
µ([0, q̂]) = fµ(q̂) = 1
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8. Very brief mathematical history of the Parisi’s formula

This Parisi formula has been introduced by Giorgio Parisi and used
abundantly in the physics literature since the 80’s. The formula above
for the spherical case is due to Crisanti-Sommers (1992).

It was first proved mathematically for the Sherrington-Kirkpatrick
model (p=2, Ising spins) at high temperature in 1987, by
Aizenman-Lebowitz-Ruelle, and in a very elegant method by Francis
Comets and Jacques Neveu in ” The Sherrington-Kirkpatrick model
of spin glasses and stochastic calculus: the high temperature case”,
CMP, 1995.
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9. Very brief mathematical history of the Parisi’s formula

The full Parisi formula was then proved in the 00’s by Talagrand,
following the so-called ”cavity method” and an idea by Guerra. This
fundamental approach was further developed by Panchenko.

For the spherical case, see Talagrand (PTRF 2006), Chen-Sen
(CMP2017), Jagannath -Tobasco (Proc AMS 2018), Auffinger-Chen
(Adv in Math 2018), Chen-Panchenko-Subag (CMP 2021), Subag
(CPAM 2021).
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For the spherical case, see Talagrand (PTRF 2006), Chen-Sen
(CMP2017), Jagannath -Tobasco (Proc AMS 2018), Auffinger-Chen
(Adv in Math 2018), Chen-Panchenko-Subag (CMP 2021), Subag
(CPAM 2021).
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10. The order parameter in Parisi’s formula

Why measures on [0, 1]??

Parisi understood early that the ”order parameter” is here infinite
dimensional. It is the ”distribution of the overlap of two replicas”.

Which means: pick two points independently under the Gibbs
measure, compute their overlap, and look at the distribution of this
random variable.

This random distribution should converge to the unique minimizer in
the Parisi formula. It is in fact proven that it does for so-called
generic models.

This order parameter should play the role of the magnetization in the
usual Ising model, i.e. describe fully the whole structure of the Gibbs
measure... (does it really?)
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Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 34 / 1



10. The order parameter in Parisi’s formula

Why measures on [0, 1]??

Parisi understood early that the ”order parameter” is here infinite
dimensional. It is the ”distribution of the overlap of two replicas”.

Which means: pick two points independently under the Gibbs
measure, compute their overlap, and look at the distribution of this
random variable.

This random distribution should converge to the unique minimizer in
the Parisi formula. It is in fact proven that it does for so-called
generic models.

This order parameter should play the role of the magnetization in the
usual Ising model, i.e. describe fully the whole structure of the Gibbs
measure... (does it really?)
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11. The Gibbs measure and Replica Symmetry Breaking

At infinite temperature, the Gibbs measure is just the uniform
measure and thus the overlap converges to 0, i.e. the distribution of
the overlap converges to δ0.

This is still true at high enough temperature (T > Ts): the minimizer
in the Parisi formula is simply δ0. This is called the Replica
Symmetric Phase (RS). Two points independently sampled from the
Gibbs measure are roughly orthogonal.

At low temperature things are more interesting (T < Ts). If the
unique minimizer of the Parisi functional is the sum of k + 1 atoms,
the model is said to be in a k-Replica Symmetry Breaking Phase
(k-RSB). If the minimizer contains a continuous part the model is in
Full Replica Symmetry Breaking Phase (FRSB).
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12. The Parisi picture

This classification is well understood in physics, but still wide open for
many models, for mathematicians.

Ising Spins: The Sherrington Kirkpatrick model (p=2, Ising) is
supposed to have a transition from RS to FRSB.

The p-spin model in the Ising case is supposed to have a transition
from RS to 1RSB and then at a lower temperature to FRSB (the
so-called Gardner transition).

And of course even less is understood for models which are not mean
field, but rather on a lattice in fixed dimension. In fact the SK model
had been introduced just as a ”trivial” step in the 70’s on the way to
the true question about the Edwards Anderson’s model. .

There is plenty of work on these 3d questions today in physics related
to the Gardner transition for real structural glasses. This might take a
few more decades for mathematicians...
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Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 36 / 1



12. The Parisi picture

This classification is well understood in physics, but still wide open for
many models, for mathematicians.

Ising Spins: The Sherrington Kirkpatrick model (p=2, Ising) is
supposed to have a transition from RS to FRSB.

The p-spin model in the Ising case is supposed to have a transition
from RS to 1RSB and then at a lower temperature to FRSB (the
so-called Gardner transition).

And of course even less is understood for models which are not mean
field, but rather on a lattice in fixed dimension. In fact the SK model
had been introduced just as a ”trivial” step in the 70’s on the way to
the true question about the Edwards Anderson’s model. .

There is plenty of work on these 3d questions today in physics related
to the Gardner transition for real structural glasses. This might take a
few more decades for mathematicians...
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13. The Parisi picture

Spherical models are simpler

The p=2 spherical case is a simple model since it reduces directly to
the GOE.

For p ≥ 3, the pure p-spin spherical model has a transition from RS
to 1 RSB at Ts , down to T = 0.

Mixed spherical models can have a more complicated picture
including k RSB and even FRSB.

Much remains to be done rigorously at low temperature.
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The landscape complexity approach
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14. The Landscape Complexity picture

From now on, we restrict to the case of spherical models.

As we have seen their Hamiltonian define smooth random centered
Gaussian functions on the sphere ΣN , with covariance structure given
by

E(HN(x)HN(y)) = Nξ(RN(x , y)) (20)

Where

ξ(r) =
∞∑
p=2

a2
pr

p (21)

Of course note that RN(x , y) = <x .y>
N = 1− ||x−y ||

2

2N . So that these
covariances are in fact functions of the Euclidean distance (or of the
distance on the sphere).

The distribution of these random functions are thus in fact isotropic.
There is even a very old result saying they are the only ones
(Schonberg 1942).
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15. The Landscape Complexity picture

One can naturally ask about the topological complexity of the random
landscape defined by these random functions

One may want to compute the number of critical points, of critical
points under a given energy level, with a fixed index?

Or ask about the topology of the sub-level sets? their Betti numbers?

The answer in a nutshell: there are exponentially many critical points
and minima (for the pure p -spin when p ≥ 3). The energy landscape
is topologically very ”rough”.

The method is based on the Kac-Rice formula, which gives a
dictionary from these random geometry questions to Random Matrix
Theory.
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16. The Landscape Complexity picture for the pure p-spin

Annealed Estimates: Let Critk(E ) be the number of critical points of
index k, and energy value less than NE , then the following limit exists
and cam be computed precisely, using a LDP for the kth eigenvalue of
the GOE

lim
N→∞

1

N
logE[Critk(E )] = Θk(E )

1 There is a value Ek(p) such that Θ0(E ) > 0 for E > −Ek .
2 The sequence −E0 < −E1 < −E2... is increasing and converges to the

threshold energy −E∞
3 The function Θk is increasing in the interval (−∞,−E∞), and is

constant above −E∞.

Quenched Estimates: Subag used a second moment method and Kac
Rice to prove that the quenched estimates are also valid for energies
E close to the ground state −E0.
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17. The Landscape Complexity picture

See (Fyodorov 2005, Auffinger-GBA-Cerny 2013, Auffinger-GBA
2013) for results giving the ”annealed” complexity i.e. the behavior of
1
N logE(Critk(E )), where Critk(E ) is the number of critical points of
index k, and below level E.

See Subag 2017-2018 for quenched ones, i.e. the behavior of
1
NE(log(Critk(E )))), for very low energy levels E , and also
Auffinger-Gold 2019 for quenched result on critical points of higher
index.
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18. The geometry of the Gibbs measure at low
temperature

Naturally this detailed understanding of the energy landscape (i.e
temperature 0) is useful for the understanding of the ”quenched”
geometry of the Gibbs measure at *very low* temperature.

See Subag 2018 for the spherical pure p-spin, and BA-Subag-Zeitouni
2020 for some mixed models (all in the 1RSB class), and for the role
of these ”quenched” results on the phenomenon of ”temperature
chaos”.

See also Auffinger-Chen 2015, Jagannath-Tobasco 2018, and Subag
2021 for the FRSB case.
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19. 1RSB for the Gibbs measure at low temperature

We summarize here what happens for the 1RSB class.

The Gibbs measure at very low temperatures is concentrated in rings
at a given height (for a given temperature) around deep local minima.
The Gibbs measure is carried by a large but finite number of them (up
to a small mass ε). Their masses form a Poisson Dirichlet process.

These local minima are the deepest ones for the pure p-spin model,
and slightly higher ones for the mixed models (their center change
with temperature, which induces temperature chaos)
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Above the static transition: the shattering phase
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20. The geometry of the Gibbs measure above the static
transition

In a more recent work with Aukosh Jagannath, we now try to study
the behavior of the spherical p-spin model (its free energy, and
possibly the Gibbs measure) at *higher* temperatures, i.e in a regime
where T > Ts , thus where the system is in the Replica Symmetric
phase.

From the Parisi formula point of view, *there is nothing to see here*!!

The phase is trivial. The overlap of two replicas tends to 0!

But in fact, it is well understood in physics that there is a very
interesting and important regime Ts < T < Tsh = Td where the
Gibbs measure is not trivial at all. This phase is called the shattering
phase.
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Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 46 / 1



20. The geometry of the Gibbs measure above the static
transition

In a more recent work with Aukosh Jagannath, we now try to study
the behavior of the spherical p-spin model (its free energy, and
possibly the Gibbs measure) at *higher* temperatures, i.e in a regime
where T > Ts , thus where the system is in the Replica Symmetric
phase.

From the Parisi formula point of view, *there is nothing to see here*!!

The phase is trivial. The overlap of two replicas tends to 0!

But in fact, it is well understood in physics that there is a very
interesting and important regime Ts < T < Tsh = Td where the
Gibbs measure is not trivial at all. This phase is called the shattering
phase.
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21. The shattering phase

What the physicists expect is that, in this phase, the Gibbs measure is
shattered in an exponentially large number of ”pieces”, each of
exponentially small mass (and all centered on roughly orthogonal
points).

This is not at all detected by the Parisi ”order parameter” i.e. the
distribution of the overlap. Indeed, two points taken at random will
be typically in two different pieces, and thus roughly orthogonal.
Their overlap will be 0.

But, as we will see, this is detected by the more precise topological
complexity approach.
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22. Brief history of the shattering phase

The shattering phase emerged long ago in a series of work in the
physics literature by Kirkpatrick-Thirumalai (1987),
Kurchan-Parisi-Virasoro (1993), and Barrat-Burioni-Mezard (1996).

It was later studied in great depth for many important problems
related to sparse mean-field models of spin glasses
(Dembo-Montanari-Sun 2013), and central questions from Theoretical
Computer Science and Combinatorics, such as random constraint
satisfaction (Mezard-Parisi-Zecchina 2002, Krzakala-Montanari-Ricci
Tersenghi 2007, Ding-Sly-Sun 2015) and combinatorial optimization
problems (Achlioptas-Coja Oghlan 2008, Sly-Zhang 2016).

In this work, we return to the dense case of spherical p-spin models
following the early and fundamental paper by Barrat, Burioni, and
Mézard [12].
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23. Brief history of the shattering phase for the REM

The shattering phase in fact is present in the simplest model of a
spin-glass, i.e. the Random Energy Model, introduced by Bernard
Derrida in 1981, where it reduces to a general fact about sums of i.i.d
variables.

The REM is a model for Ising spins ΣN = {−1, 1}N , where the
HN(σ) are just i.i.d N(0,N) variables. So that

ZN(β) =
∑

σ∈{−1,1}N
e−βHN(σ)

It is easy to see that there is a RS to 1RSB static phase transition at
βs =

√
ln 2.
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24. Brief history of the shattering phase for the REM

But also that there is another static phase transition at βd =
√

ln 2.
For beta smaller than βs the free energy fluctuates Gaussianly, but
between βs and βd the fluctuation are stable. Moreover the Gibbs
measure is then ”shattered” into exponentially many bits, even though
the ”order parameter”, i.e. the distribution of the overlap is trivial.

This βd is also the onset of the dynamical phase transition, and of
interesting aging regimes.
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25. The shattering phase for the p-spin model

Consider, for A ⊂ ΣN , the free energy on A

FN(β,A) =
1

N
log

∫
A
e−βHN(x)dµN(x) (22)

Define the ring B(x , q, η) = {y ∈ ΣN , |RN(x , y)− q| ≤ η}
For a fixed T > 0, E ∈ R, r ≥ 0, and 0 < q < 1, we say the free
energy landscape is (E , q, r)-shattered at temperature T iff

There exist c , c ′ > 0 and sequences εN , ηN , δN → 0, such that, with
probability tending to 1, the following occurs:
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26. The shattering phase for the p-spin model

There is a sequence of sets AN ⊂ CritN([−E − εN ,−E + εN ]), such that
for β = T−1,

1 (positive complexity) 1
N log |AN | ≥ c ,

2 (separation) for all distinct x , y ∈ A, we have that
B(x , q, ηN) ∩ B(y , q, ηN) = ∅ and that R(x , y) < r ,

3 (sub-dominance) and for each x ∈ A, the band B(x , q, ηN) is
c ′-subdominant,

FN(β)− FN(B(x , q, ηN);β) > c ′ > 0.

or equivalently
GN,β(B(x , q, ηN)) ≤ e−c

′N

4 (free energy equivalence) Furthermore, we have that

FN(β)− FN(∪x∈AN
B(x , q, ηN), β)→ 0

in probability.
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27. Existence of the shattering phase

Theorem (Jagannath, GBA CPAM 2023)

For p ≥ 4, there exists a T0 ∈ (Ts ,Tsh] where Tsh =
√

p(p−2)p−2

(p−1)p−1 ,

such that the free energy landscape is (E (β), q(β), r) shattered for all
Ts < T < T0.

Here E (β) and q(β) and r > 0 are explicitly given by our analysis.

This analysis is based on the computation of the so-called TAP
(Thouless-Anderson-Palmer) free energy, leveraging the recent
approach by Subag.

The result is not yet in optimal form, since the result is not yet at the
level of Gibbs measures but only at the level of free energy
equivalence. Moreover the range of temperatures should go up to Tsh

and not stop at T0.
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Slow dynamics at high temperature
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28. Langevin Dynamics

On top of statics questions, the behavior of dynamics is also very rich
and intriguing for Spin Glasses (see Kirkpatrick-Thirumalai,
Sompolinsky-Zippelius, Cugliandolo-Kurchan,
Kurchan-Parisi-Virasoro, Barrat-Burioni-Mezard, and many others).

We consider here the natural Langevin dynamics on the sphere ΣN for
the spherical spin glass models{

dXt = dBt − β∇HN(Xt)dt

X0 = x ,

The Gibbs measure is naturally reversible for these dynamics, and the
first natural question is about the speed of convergence.
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29. Langevin Dynamics for Spherical Spin Glasses

The study of *short term* dynamics (i.e. N →∞ first and then
t →∞) has been developed by Cugliandolo-Kurchan-Crisanti-Franz
and others, and by BA-Guionnet, BA-Dembo-Guionnet on the math
side.

At high enough temperature these dynamics are indeed fast. But
what is ”high enough” really?

At low enough temperature, the convergence to equilibrium is
exponentially slow! The mixing time is exponentially large in N, and
the spectral gap is exponentially small in N. (Jagannath-Gheissari
2019, GBA-Jagannath 2018 for general results).
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3. Back to the Elastic Manifold: The quenched free
energy and Replica Symmetry Breaking
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1. A first Mezard-Parisi formula for the free energy

The first result is the existence of the quenched limiting free energy
f (β): As N →∞, the limit f (β) = 1

NLd
logZN,β exists a.s and in

expectation

This limit can be described by a sup-inf variational problem, as

f (β) = sup
q∈(0,∞)

inf
ζ∈Y (q)

Pβ(q, ζ)

Here Y (q) is the set of probability measures on [0, q], whose support
does not contain q.
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2. A first Mezard-Parisi formula for the free energy

The functional Pβ(q, ζ) is defined by

Pβ(q, ζ) =
1

2
(log(

2π

β
) + β

h2

µ
− βµq

+Λ(β(q−q∗))+

∫ q∗

0
βK (βδ(u))du−2β2

∫ q

0
ζ([0, u])B ′(2(q−u))du)

Where q∗ is such that ζ([q∗, q]) = 0. It is easy to check that this
definition does not depend on the choice of q∗
And δ(s) =

∫ q
s ζ([0, u])du

Reminder: B defines the covariance of the isotropic noise.
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Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 60 / 1



2. A first Mezard-Parisi formula for the free energy

The functional Pβ(q, ζ) is defined by

Pβ(q, ζ) =
1

2
(log(

2π

β
) + β

h2

µ
− βµq

+Λ(β(q−q∗))+

∫ q∗

0
βK (βδ(u))du−2β2

∫ q

0
ζ([0, u])B ′(2(q−u))du)

Where q∗ is such that ζ([q∗, q]) = 0. It is easy to check that this
definition does not depend on the choice of q∗

And δ(s) =
∫ q
s ζ([0, u])du

Reminder: B defines the covariance of the isotropic noise.
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3. A first Mezard-Parisi formula for the free energy

The auxiliary function K from (0,∞)) to (0,∞)) is defined as the
functional inverse of the normalized resolvent R(u) = tr(I − t∆)−1 of
the discrete Laplacian, i.e.

tr(K (u)I − t∆)−1 = u

The function Λ from (0,∞)) to (0,∞)) is defined by

Λ(u) = uK (u)− 1

Ld
log det(K (u)I − t∆)

Λ is in fact the Legendre transform of the strictly concave function
1
Ld

log det(K (u)I − t∆).

Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 61 / 1



3. A first Mezard-Parisi formula for the free energy

The auxiliary function K from (0,∞)) to (0,∞)) is defined as the
functional inverse of the normalized resolvent R(u) = tr(I − t∆)−1 of
the discrete Laplacian, i.e.

tr(K (u)I − t∆)−1 = u

The function Λ from (0,∞)) to (0,∞)) is defined by

Λ(u) = uK (u)− 1

Ld
log det(K (u)I − t∆)

Λ is in fact the Legendre transform of the strictly concave function
1
Ld

log det(K (u)I − t∆).
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4. A better Mezard-Parisi formula for the free energy

We prove that in fact the variational problem defining the free energy
can be solved

f (β) = sup
q∈(0,∞)

inf
ζ∈Y (q)

Pβ(q, ζ) = Pβ(qβ, ζβ))

Where the couple (qβ, ζβ) is determined as the unique solution of the
system of equations:

β

∫ q

0
ζ([0, u])du = R(µ)

ζ({s ∈ [0, q], fβ,q(s) = sup
0<s′<q

fβ,q(s ′)}) = 1

Where

fβ,q(s) =

∫ s

0
Fβ,q(u)du

Fβ,q(s) = −2B ′(2(q − s)) +

∫ s

0
K ′(βδ(u))du
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5. First consequences on the Gibbs measure: interpretation
of (qβ, ζβ)

This couple (qβ, ζβ) has a direct and important interpretation, in
terms of radius and overlap distribution.

The natural typical ”radius” (the size of ||u(x)||2) at inverse
temperature β is determined by qβ

lim
N→∞

E (< (||u(x)||2 − (qβ +
h2

µ2
))2 >β) = 0

Consider two replica u and u′ picked independently at inverse
temperature β, and the distribution of their overlap, i.e. their inner
product ((u(x), u′(x))N for any x ∈ [1, L]d . As N →∞, it converges
to ζβ (shifted if a field h is added).

For any bounded continuous function f

lim
N→∞

E (f ((u(x), u′(x))N) =

∫
f (r +

h2

µ2
)ζβ(dr)
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6. Full characterization of the replica symmetric phase, RS

Define Ri (µ) = tr(µI − t∆)−i and

qL,β = −2B ′(
2

β
R1(µ))R2(µ)

The system is RS, i.e. the limiting distribution of the overlap is a
Dirac mass, iff

sup
0<s<R1(µ)

gβ(s) = gβ(R1(µ))

Where

gβ(s) = β2B(
2s

β
) + Λ(s)− s(2βB ′(

2

β
R1(µ)) + µ)

Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 64 / 1



6. Full characterization of the replica symmetric phase, RS

Define Ri (µ) = tr(µI − t∆)−i and

qL,β = −2B ′(
2

β
R1(µ))R2(µ)

The system is RS, i.e. the limiting distribution of the overlap is a
Dirac mass, iff

sup
0<s<R1(µ)

gβ(s) = gβ(R1(µ))

Where

gβ(s) = β2B(
2s

β
) + Λ(s)− s(2βB ′(

2

β
R1(µ)) + µ)

Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 64 / 1



6. Full characterization of the replica symmetric phase, RS

Define Ri (µ) = tr(µI − t∆)−i and

qL,β = −2B ′(
2

β
R1(µ))R2(µ)

The system is RS, i.e. the limiting distribution of the overlap is a
Dirac mass, iff

sup
0<s<R1(µ)

gβ(s) = gβ(R1(µ))

Where

gβ(s) = β2B(
2s

β
) + Λ(s)− s(2βB ′(

2

β
R1(µ)) + µ)
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Dirac mass, iff

sup
0<s<R1(µ)

gβ(s) = gβ(R1(µ))

Where

gβ(s) = β2B(
2s

β
) + Λ(s)− s(2βB ′(

2

β
R1(µ)) + µ)
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7. Full characterization of the replica symmetric phase, RS

In the RS phase, the radius is given explicitly by

qβ = qL,β +
1

β
R1(µ)

And the limiting free energy is given by

1

2
(log(

2π

β
) +

1

Ld
log det(µI − t∆) + β2(B(0)− B(

2

β
R1(µ)))
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Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 65 / 1



8. RS breaking and the Larkin mass at positive
temperature

The zero-temperature Larkin mass µL(∞), was defined as the unique
solution of

4B ′′(0)R2(µL(∞)) = 1

Now define the Larkin mass at positive temperature µL(β) as the
smallest value such that for µ > µL(β), we have that

4B ′′(2
R1(µ)

β
) ≤ 1

R2(µ)

The Larkin mass is decreasing with β, and L(∞) is indeed the limit of
L(β) as β →∞.
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9. RS breaking and the Larkin mass at positive
temperature

If µ ≥ µL(β), then the model is RS at inverse temperature β

If µ < µL(β), then the model is RSB at (β, µ) for β large enough.

If 4B ′′( 2R1(µ)
β )R2(µ) > 1 the model is RSB.
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10. RS breaking and the Larkin mass at positive
temperature

This shows that the zero-temperature Larkin mass µL(∞) serves as
the RS-RSB phase boundary for temperatures approaching zero.

We observe that as β →∞, the condition 4B ′′(2β−1R1(µ))R2(µ) > 1
holds in an increasing region of (0, µL(∞)), which eventually becomes
the entire interval. In practice, this condition appears to provide a
reasonable picture for the phase portrait at very low temperatures.
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11. A crazy fact: possible oscillations between RS and
RSB !!

However, at fixed positive temperatures, the situation is more subtle.
More specifically, the model may oscillate between the RS and RSB
phases in the intervals where 4B ′′(2β−1R1(µ))R2(µ) < 1, except for
the region above the Larkin mass.

This is already a problem in the one-site case at fixed temperature
(subject to a slight non-degeneracy condition) the Larkin mass µL(∞)
detects the first, but perhaps not the last, shift between RS-RSB
phases!!

Gérard BEN AROUS (Courant) The Mézard-Parisi Elastic Manifold July 6, 2025 69 / 1



11. A crazy fact: possible oscillations between RS and
RSB !!

However, at fixed positive temperatures, the situation is more subtle.
More specifically, the model may oscillate between the RS and RSB
phases in the intervals where 4B ′′(2β−1R1(µ))R2(µ) < 1, except for
the region above the Larkin mass.

This is already a problem in the one-site case at fixed temperature
(subject to a slight non-degeneracy condition) the Larkin mass µL(∞)
detects the first, but perhaps not the last, shift between RS-RSB
phases!!
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12. RS/RSB Phase Diagram

Phase Diagram in the case B(x) = e−x + e−8x and |Ld | = 1.

Dark Blue is the region above the Larkin mass, which is RS. Green is
RSB by the local condition. Orange is neither.
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13. Zoomed in: RS/RSB Phase Diagram

Phase Diagram in the case B(x) = e−x + e−8x and |Ld | = 1.

Green and Light Blue regions are RSB. Yellow and Dark Blue regions
are RS.
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4. Stating the results for the topological complexity
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1. Annealed Complexity

Let Ntot the (random) number of all critical points of the Elastic
Manifold Hamiltonian H(u), then

Theorem (BA-Bourgade, McKenna, Arxiv 2021, CPAM 2024) The
annealed total complexity is given by

lim
N→∞

1

NLd
logE[Ntot ] = Σ(µ0, t0, b) (23)

Similarly let Nm the (random) number of all local minima of the
Elastic Manifold Hamiltonian

lim
N→∞

1

NLd
logE[Nmin] = Σmin(µ0, t0, b) (24)

where the functions Σ and Σmin are explicit and b = 4B ′′(0).
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2. The complexity functions Σ and Σmin

We give here an explicit formula for Σ and Σmin.

Consider the simple (and deterministic) real-symmetric matrix of size
Ld given by

D(µ0, t0) = µ0Id − t0∆ (25)

and its spectral measure

µ(t0, µ0) =
1

Ld

Ld∑
i=1

δλi (26)

and finally denote by σb the semi-circle measure of radius 2
√
b > 0
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3. The complexity functions Σ and Σmin

Then we have the variational formulae

Σ(µ0, t0, b) = − 1

Ld
log detD(µ0, t0)+ (27)

sup
u∈R

(

∫
log |λ− u|(σb � µ(t0, µ0))(dλ)− u2

2b
) (28)

and

Σmin(µ0, t0, b) = − 1

Ld
log detD(µ0, t0)+ (29)

sup
u≤`

(

∫
log |λ− u|(σb � µ(t0, µ0))(dλ)− u2

2b
) (30)

where ` = `(t0, µ0) is the left end of the support of the free
convolution σb � µ(t0, µ0).
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4. Topological trivialization above the Larkin mass

We can in fact compute the supremum in the formulae above.

Understanding this variational principle is a rather delicate step using
Burger’s equation for the semi-circle and an inequality by
Guionnet-Maida (2020) for ”free convolution at the edge”.

For t0 and b given, define the ”Larkin mass” as the unique solution
µc = µc(t0, b) of ∫

1

(µc + λ)2
µ̂−t0∆(dλ) =

1

b
(31)
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5. Topological trivialization above the Larkin mass

Then, when µ ≥ µc , both the total and the minima complexities
Σ(µ0, t0, b) and Σmin(µ0, t0, b) vanish! i.e. ” a large enough mass
kills the exponential complexity of the Landscape ” !!

We could also phrase this by saying that the complexities vanish when
the noise level b = 4B ′′(0) is lower than the critical noise level

bc = bc(t0, µ0) = (

∫
1

(µ0 + λ)2
µ̂−t0∆(dλ))−1 (32)
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6. Topological complexity below the Larkin mass

Moreover, below the Larkin mass, both annealed complexities are
positive, and explicit (I’ll spare you the gory details)

Indeed, the supremum in the formula giving the total complexity is
achieved at an explicit v ∈ R
The supremum in the formula giving the minima complexity is
achieved at `(t0, µ0), i.e. the left end of the support of the free
convolution σb � µ(t0, µ0)
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7. The phase transition at the Larkin mass or at the
critical noise level

We express it here in terms of the noise level b = 4B ′′(0).

When b approaches the critical level bc from above, the total
annealed complexity vanishes quadratically, and the minima annealed
complexity vanishes cubically as a function of the noise level

Σ(µ0, t0, b) = ctot(b − bc)2 + O((b − bc)3) (33)

Σmin(µ0, t0, b) = cmin(b − bc)3 + O((b − bc)4) (34)
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8. The proofs in a nutshell

1 Apply Kac-Rice’s formula, which gives a dictionary between these
topological complexity questions and RMT, in fact about a delicate
control of some structured Random Matrices.

2 In order to use it, compute the distribution of the Hessian at a point
conditioned by the fact that the point is critical (easy, since our
function is Gaussian).

3 Apply the general results of (B-B-McK, PMP 2023) on random
determinants to the random determinant of this matrix (this is the
case of a block structured Gaussian matrix).

4 Apply Laplace’s formula, and get a (very heavy) variational formula

on RLd
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9. The proofs in a nutshell

1 Simplify the variational problem to the one mentioned above on R,
through a miracle (an unexpected convexity)

2 Recognize this variational problem as related to the problem in d = 0,
i.e,. for one point. This problem is a ”spin glass” type model: the
soft spin in an anisotropic random potential!!

3 Use our understanding of this spin glass problem, as mentioned
below, to deduce the results about the topological complexity and the
topological transition for the Elastic manifold.
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topological transition for the Elastic manifold.
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10. Quenched complexity?

What about computing quenched complexity?

One can always try to use the non-rigorous ”replicated Kac-Rice”
method (Ros-GBA-Biroli-Cammarota 2018).

But if one wants to be rigorous mathematically, there is only one
rather blunt tool: computing higher moments of the number of
critical points using an extension of Kac-Rice again. This works only
to prove that the quenched complexity is equal to the annealed one!
So not when the low temperature phase is FRSB...

This has been done for spherical spin glasses in a beautiful series of
works by E. Subag. It could be tried here (not easy and not always
useful).
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