We associate to every function $u \in GBD(\Omega)$ a bounded Radon measure μu with values in the space of symmetric matrices, which generalises the distributional symmetric gradient Eu defined for functions of bounded deformation. We show that this measure μu admits a decomposition as the sum of three mutually singular matrix-valued measures μu , μcu , and μju , the absolutely continuous part, the Cantor part, and the jump part, as in the case of $BD(\Omega)$ functions. We then characterise the space $GSBD(\Omega)$, originally defined only by slicing, as the space of functions $u \in GBD(\Omega)$ such that $\mu cu = 0$. This is joint work with Gianni Dal Maso.