Due to an update, this website will be unavailable on Friday, February 07 from 1pm to 2pm.

Bonn Math Events

Dense and smooth lattices in any genusMPIM

by Wessel van Woerden (University of Bordeaux)

Europe/Berlin
MPIM, Vivatsgasse, 7 - Lecture Hall (Max Planck Institute for Mathematics)

MPIM, Vivatsgasse, 7 - Lecture Hall

Max Planck Institute for Mathematics

120
Description

https://www.mpim-bonn.mpg.de/node/13685 

 

The Lattice Isomorphism Problem (LIP) was recently introduced as a new hardness assumption for post-quantum cryptography. The strongest known efficiently computable invariant for LIP is the genus of a lattice. To instantiate LIP-based schemes one often requires the existence of a lattice that (1) lies in some fixed genus, and (2) has some good geometric properties such as a high packing density or a small smoothness parameter.

In this talk I will show that such lattices exist. In particular, building upon classical results by Siegel (1935), we will see that essentially any genus contains a lattice with a close to optimal packing density, smoothing parameter and covering radius.